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 Abstract—In the machine learning competition, we were 
overwhelmed by the large dataset and some missing values. To, 
cope with this, we used Expectation-Maximization algorithm and 
Interpolation to deal with missing data. For the sake of time 
efficiency, we preprocessed the training data with feature selection 
and under sampling. Furthermore, we tried Naïve Bayes, Linear 
Regression, Logistic Regression, Support Vector Machines using 
RBF Kernel, Random Forest Regression and so on. Finally, we 
blended the predictions from those algorithms and get the best 
result (AUC on scoreboard = 0.771108). 

Keywords—rank, classification, data process 

I.  INTRODUCTION  
 In this competition, we were asked to predict whether 
customers would click an ad provided by a search engine. 
Training and test data were provided by the class. There is a 
scoreboard that we can upload our predictions and get the AUC 
evaluations (area under the ROC curve) of our predictions on 
half of the test data. We decided to use cross validations to get 
some parameters and chose the one with highest score on 
scoreboard as the best choice.  

II. MISSING DATA IMPUTATION 
In the original dataset, we can easily find that there are many 
missing values (about 10%). Because the missing data account 
for a great proportion and every dimension has missing values, 
it is impossible that we just throw it away. By the way, if we 
just make imputation by replacing missing values with mean, 
it will get really bad performance. Therefore we have 
implemented the following methods. 

A. Expectation and Maximization 
A general approach for computing maximum likelihood 

estimates from incomplete data is so-called EM algorithm [7], 
which consists of iterative calculation involving two steps. 

 
1. Prediction Step. 

Given some estimate θ of the unknown parameters, 
predict the contribution of any missing observation to the 
sufficient statistics. 
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2. Estimation Step. 
Use the predicted sufficient statistics to compute the 

revised estimate of the parameters. 
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B. Interpolation and Extrapolation 
In this method, we use extra/interpolation [8] to replace the 
missing values. Missing data interpolation is a particular case 
of data regularization, where the input data are already given 
on a regular grid, and one needs to reconstruct only the missing 
values in empty bins.  

 From table 1, we can find that data imputation using EM 
algorithm has better performance than Interpolation.  It is 
because that interpolation only uses linear model to replace the 
missing values. As a result, we use data replaced with EM 
algorithm in the following experiments. By the way, scaled 
data gets worse performance than normal data. There may be a 
reason that we scale up the noisy data and therefore get a worse 
performance. 

TABLE I.  MISSING DATA WITH LOGISTIC REGRESSION 

Method 
AUC evaluation 

Training AUC Score Board AUC 

EM 0.7476 0.7633 

EM* 0.7477 0.7632 

Interpolation 0.7462 0.7579 

Interpolation* 0.7460 0.7576 
 

III. FEATURE SELECTION 
For reason of data interpretation and reduction computation 

time, we had no choice but to make feature selection and the 
result is surprisingly good. The reason may be that the noisy 
attributes are filtered out and we only use the most informative 
attributes. The following are some methods we implement.  

A. Principle Component Analysis 
We use principle component analysis [9] to implement 

orthogonal data transformation, which makes the variance of 
the projected data to be maximum value. In PCA, The 
variance of the projected data (transformed by projection 
vectorω) which we want to maximize is  

 

Var ω!x =   E(ω!x − ω!µ)! =   ω! ω  
 

By some computation, the projected axes (eigenvectors) ω are 
the solution of Σω = λω. (Σ is the covariance matrix of the 
original data) Furthermore, we selected those eigenvectors (In 



our experiment, 10) with eigen value larger than 1, and the 
corresponding reconstruction rate 
 

construction  rate =    !"#(!"#"$%"&  !"#!$  !"#$%)
!"#(!"!#$  !"#!$  !"#$%)

  
 

is about 0.99. We used the projected data as one of our dataset. 
 

B. Predictive Ability and Redundancy 
From result of some data analysis, we can detect that there 

are some dependencies in the original 71-dim data which may 
lead to high redundancy and bad training result. As a result, 
we preferred dataset with high correlation with class (high 
predictive ability) label but low correlation between each two 
dimensions (low redundancy) as our ideal processed training 
source. With the help of CfsSubsetEval filter of WEKA [10], 
we use full data and 5 cross validation set respectively to get 
the appropriate subset of the original dataset. 
 

C. Information Gain 
Information gain, by definition, is the change in 

information entropy from a prior state to a state that takes 
some information as given. 

 

IG class, attribute =   H class −   H(class|attributes)  
 

With the help of InfoGainAttributeEval filter of WEKA [10], 
we use full data and 5 cross validation set respectively to get 
the appropriate subset of the original dataset. 

We use the above methods to implement feature selection, and 
Table 2 shows that the performance using EM, logistic 
regression and one of the feature selection method together. 
We can find that there is a trend that more attributes will result 
in better performance, except PCA. Surprisingly, the 
performance of PCA with 10-dim transformed data is better 
than the one with 20-dim and even 71-dim data.  It is probably 
because that PCA makes the eigenvector with larger eigen 
value more important, thus the other eigenvectors may be 
noisier. Besides, the performance of 25-dim data selected by 
CfsSubsetEval is almost the same as that of 39-dim data 
selected by InfoGainAttributeEval. There may be a reason that 
CfsSubsetEval stepwise optimizes the criterion, but 
InfoGainAttributeEval uses greedy algorithm. 
 

IV. SAMPLING 

A. Under-Sampling 
It is obvious that the number of +1 and -1 label in the 

training set is extremely unbalanced (1816/38184). For a 
binary classification, if the class labels are heavily unbalanced, 
then the prediction will be heavily biased to majority class. To 
avoid this biased problem, we sample the dataset with equal 
+1 and -1 labels. That is to say, we filter out some data of the 
majority class to make a sub training set. 

B. Over-Sampling 
There is another way to make a balanced data set from an 

unbalanced data set. If we duplicate a minority data many 
times to generate a bigger data set, we can make the number of 
data of each class roughly the same. We mostly use under-

sampling method since using small data set during training is 
more efficient. According to [11], there is no major difference 
between using over-sampling, under-sampling or using both at 
the same time. Therefore, we choose under-sampling, which is 
the most efficient. We could repeat the under-sampling and 
training procedure multiple times to obtain different models, 
and then choose the best one based on the results of cross 
validation or doing blending. Therefore, by using under-
sampling which results in small training set, we would not lose 
much information. 

TABLE II.  FEATURE SELECTION WITH LOGISTIC REGRESSION 
AND EM 

Method 
AUC evaluation 

Training AUC Score Board AUC 

PCA(10) 0.7405 0.7629 

PCA(20) 0.7427 0.7604 

Predictive Ability(all 16) 0.7437 0.7606 

Predictive Ability(5CV 25) 0.7454 0.7631 

Information Gain(all 25) 0.7439 0.7635 

Information Gain(all 39) 0.7454 0.7634 

Information Gain(5CV 41) 0.7455 0.7631 
 

V. VALIDATION 
We use 5-fold cross validation and take the result on 

scoreboard as our validation method. We find that the result of 
5-fold cross validation has a high variance, that is, the 5 
validation AUC from the 5-fold cross validation could be very 
different. The difference between maximum and minimum of 
AUC can be as high as 0.05. 

We think it is because the number of data with label +1, 
1816, is already small, and it gets even smaller if further 
divided by 5. Although the number of label -1 data is big, 
small number of label +1 data would make the result not close 
to the final test set AUC. Since the number of label +1 data is 
small, we think we cannot afford to let the validation set 
bigger, which would result in smaller number of +1 label in 
training set. Thus, we believe that the cross validation does not 
accurately reflect the test-AUC. We think that if we want to 
improve our performance on the scale of 0.001~0.01, then 
cross validation is not really helpful. Therefore, we use cross 
validation to ensure that the performance pass our base line 
(AUC=0.73~0.74). We would roughly find the parameter 
which gives us good results on cross validation and then we 
fine tune the parameter by using the scoreboard result. 

However, using the result on the scoreboard may be 
accompanied by the risk of over-fitting. We think the public 
test set on the scoreboard is quite big as it is roughly on the 
same scale as number of training data, and equals to the 
number of hidden test data. As a result, we believe we can 
trust the scoreboard result and use it as validation to improve 
our performance as long as we do not use slow cheating to get 
the public test set data. 



 

To address these problems, we plot the figure as follows: 
We assume that we use scoreboard to do model selection and 
select the model which performs best on the public test set, 
and we plot the hidden test set AUC of that model accordingly. 
These results are obtained from the scoreboard. We can see 
that the public test set AUC is higher than the hidden test set 
AUC. However, as we improve our public test set AUC, the 
hidden test set AUC improves as well most of the time. Thus, 
we can say that the method we use is not over-fitting badly. 
Overall, using cross validation and then using scoreboard as 
validation indeed improve our hidden test AUC. 

 

VI. CLASSIFICATION 

A. Naïve Bayes 
Naïve Bayes [12] assumes that the behavior of a particular 

feature of a class is unrelated to that of the other feature of the 
class, when given the class. Naïve Bayes has an advantage that 
it only requires a small amount of time to get the parameters, 
which are means and variances of each feature. Calculating 
parameters in aspect of statistical, naïve Bayes can ignore 
missing values in the dataset, which means that we can avoid 
the uncertainty caused by replacing missing values. Assuming 
that every pairs of features are independent, we can get  

𝑃 𝑦 = 𝑐 𝒙 = !
!
𝑃(𝑦 = 𝑐) 𝑃(𝑥!|𝑦 = 𝑐)!

!!!   

Implementing naïve Bayes in our situation, we can get the 
expectation:  

𝐸 𝒙 = −1 ∗   𝑃 𝑦 = −1 𝒙 + 1 ∗ 𝑃 𝑦 = 1 𝒙  
        = 2 ∗ !

!
𝑃(𝑦 = 1) 𝑃 𝑥! 𝑦 = 1 − 1!

!!!   

Noted that 
2

𝑍
 and -1 can be ignored because AUC only takes 

the order of the samples into consideration. In the training step, 
we calculate 𝑃 𝑦 = 1 = (#  𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑖𝑛  𝑐𝑙𝑎𝑠𝑠  1)/
(𝑡𝑜𝑡𝑎𝑙  #  𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒𝑠), 𝜇𝑖 and 𝜎𝑖, which are means and 
variances of each feature of the samples in class 1. Missing 
values were skipped when calculating means and variances. In 
the step of test, for each sample and each feature, we evaluate 

𝑃 𝑥! 𝑦 = 1 = !

!!!!
!
𝑒
!
(!!!!!)

!

!!!
!   

Then we calculate the prediction score of a sample 

𝑃(𝑦 = 1) 𝑃(𝑥!|𝑦 = 1){!:  !!  !"  !"#  !"##"$%}   

The probability of the feature with missing value is ignored 
[4]. The model achieves 0.7467 AUC on the public scoreboard. 

B. Linear Regression 
Linear regression uses the hypothesis set that contains all 

kinds of linear combinations of the components of x and tries 
to minimize the squared error 𝐸𝑖𝑛 ℎ =

1

𝑁
(ℎ 𝒙𝑛 −𝑁

𝑛=1

𝑦0)
2. For tuning, we decided to use ridge regression. The 

solution can be calculated simply by the formula: 𝑤𝑟𝑒𝑔 =

(𝑍𝑇𝑍 + 𝜆𝐼)−1𝑍𝑇𝒚. It has perfect computation efficiency and 
there is no parameter other than 𝜆 for regularization, which 
means we can get the best choice of parameter easily. 

Trying 𝜆 from 0 to 60 with 0.5 step size, Figure 1 shows 
the best choice is 𝜆 = 22.5, and the performance of ridge 
regression on scoreboard is AUC=0.7615. 

Fig. 1. Ridge Regression: 𝜆 versus AUC 

C. Logistic Regression 
Given input data x and weight w, the logistic regression 
algorithm models the classification model by 

P y = ±1 𝐱,𝐰 = !
!!!"#  (!!(𝐰!𝐱))

 , 

where y is the classification label. To reduce model 
complexity and to avoid over-fitting, we add the regularization 
term !

!
𝐰!𝐰 into the minimization criterion 

min𝐰
!
!
𝐰!𝐰 + C log  (1 + exp  (−y!(𝐰!x!)))!

!!!  , 

where C is the regularization parameter. We use the scikit-
learn package [5] to solve the problem. The model achieves 
0.7616 AUC on public scoreboard and 0.7402 AUC on the 
hidden scoreboard.  

D. Random Optimization with Linear Model  
If we use linear model, it is better to optimize in-sample 

AUC rather than other error functions. Because AUC is not 
differentiable and not convex, we use a naive method 
commonly used when we have no idea about the function we 
want to optimize. We randomly initial w, and then obtain v 
from Gaussian distribution (0,0.001). If w’=w+w.*v is better 
than w in terms of AUC, update w by w’. [13] 

E. K Nearest Neighbor 
K-nearest neighbor is the method to find the most similar k 

training data of a test data point and to weight the k data 
linearly as output result. We use scikit-learn package [5], 
which has k-nearest-neighbor implementation. The similarity 
function has something to do with Euclidean distance of two 
data on the feature space. There are two options for weight, 



 

uniform and distance. The uniform weighted option uniformly 
sums up the k neighbors, and the distance-weighted option 
uses the inverse of distance between two data on the feature 
space as weight. For the classification, we output the 
percentage of k neighbors being +1; for the regression, we 
output the linearly weighted sum of label y as output. We use 
EM algorithm to recover missing data and then use scikit-learn 
[5] to perform k-nearest neighbor algorithm. The model 
achieves 0.7645 AUC on the public scoreboard.  

TABLE III.  K NEAREST NEIGHBOR OF DIFFERENT K AND 
CORRESPONDING SCOREBOARD AUC 

Without under-
sampling 

With 
under-sampling 

weighted 1/distance Weighted uniform wieghted 

K Scoreboard 
AUC K Scorebo-

ard AUC K Scorebo-
ard AUC 

e+04 0.7632 1000 0.7632 300 0.7633 
4000 0.7630 1500 0.7628 270 0.7636 
2000 0.7628 1204 0.7629 250 0.7645 
1000 0.7592 900 0.7632 -- -- 
700 0.7568 300 0.7624 -- -- 

F. Support Vector Machine 
We chose C-SVM and RBF (radial basis function) kernel. 

We used RBF kernel because it only needs one parameter for 
us to find the best one and its numerical range is always in [0, 
1], which means it is more numerically stable than polynomial 
and linear kernel [1][2]. 

We used libsvm [3] as our analyzing tool. In order to make 
use of “grid.py” tool in the package, we change some code and 
make AUC instead of precision as the output. First, we tried 
parameter c in logistic scale from 2! to 2!", 𝛾 in logistic scale 
from 2!!" to 2!" and the step size in log scale is 5. Figure 2 
shows that the best choice seem to locate in the region that 
𝑐 ∈ 2!", 2!" , 𝛾 ∈ [2!!", 2!!"]. Therefore, we tried parameter 
c in log scale from 2!" to 2!", 𝛾 in logistic scale from 2!!" to 
2!" and the step size in logistic scale is 1. According to Figure 
3, the best choices of parameters are 𝑐 = 2!" and 𝛾 = 2!!" 
and we can achieve 0.7614 AUC on the scoreboard. 

G. Random Forest 
Random forest is an ensemble method constructed from 

decision tree. We use random forest in the scikit-learn package, 
which uses CART (classification and regression tree) for 
decision tree [15]. The CART algorithm splits the 
source set into subsets based on minimizing impurity function 
(We use Gini function in the as impurity function.) This 
process is repeated on each subset in a recursive manner 
called recursive partitioning. Then, we use boosting method, 
which uses sampling with replacement to construct different 
training set and to aggregate decision trees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By the way, when reaching terminals (leaves), the 
probability measure we use for classification tree of each class 
is proportional to the number of each class in the leaf. To get 
the better AUC on scoreboard, we use probability measure 
instead of +1/-1label as our output. For regression tree, we use 
minimum square error improvement as impurity function[].  
 

TABLE IV.  RANDOM FOREST WITH 200 DECISION TREES 

 
Classification Criterion Regression Criterion 

With US Without US With US Without US 

depth CV AUC CV AUC CV AUC CV AUC 

1 0.7298 0.7066 0.7303 0.6896 

2 0.7363 0.7418 0.7393 0.7454 

3 0.7377 0.7435 0.7358 0.7466 

4 0.7375 0.7438 0.7348 0.7455 

5 0.7373 0.7444 0.7335 0.7447 

6 0.7376 0.7438 0.7339 0.7447 

7 0.7360 0.7434 0.7320 0.7440 
8 0.7344 0.7421 0.7322 0.7428 

 
We used cross validation to determine the range of 

parameter we want to focus. As in Table 4, we can see that the 
number of tree is not really matter much, so we set the number 
of tree to 200 and the maximum tree depth should be 2~4, not 
too large. With these rules in mind, we can then tune the 

Fig.2. result of libsvm grid 

 

 
Fig.3. result of libsvm grid (preciser) 

 



 

parameters (e.g. minimum number to split a node for 
regularization) using public test set score on the scoreboard. 

In the preprocessing step, we used the EM algorithm to 
recover missing values, under-sampled different dataset, and 
chose some datasets that perform well on cross validation set 
and scoreboard. Training on the under-sampling data set with 
equal number of y=+1 and y=-1 data, Random Forest 
Regression (n_estimators=200, max_depth=4, 
min_samples_split=750, min_samples_leaf=437, n_jobs=7) 
achieves 0.7701 on the public scoreboard and 0.7521 on the 
hidden scoreboard. In addition, Random Forest Classifier 
(n_estimators=2000, max_depth=6) achieves0.7669 on the 
public scoreboard and 0.7478 on the hidden scoreboard. 

We can use random forest to do feature selection as well. 
For each node we can add importance on a feature as follows. 
If using Gini function as impurity function, the difference of 
the original error and the error of the split times the number of 
samples that passed the node will be added to that feature. If 
using squared function, improvement in squared error will be 
added [16]. 

Besides, by computing feature importance, we can see that 
the 25th feature is the most important feature in using random 
forest. Therefore we think if we heavily depend on that feature, 
missing values on that feature would cause high error. To 
dealing with this problem, we thought we can construct two 
models. We construct two datasets, one is those data whose 
25th feature is not missing and the other one is using all data 
but filtering out the 25th feature such that there are only 70 
features left. By doing so, we train two random forest model 
h1, h2 accordingly and use h(x) below as the prediction 
function. 

h x =   
h! x , if  the  25th  feature  not  missing    
h! x , if  the  25th  feature  missing

 

With that, we can avoid relying on missing 25th feature, 
which is actually help to improve the performance of random 
forest. The model achieves 0.7683 on the public score board 
and 0.7487 on the hidden score board. 

Fig.4.      One of the decision tree generated by random forest. 

H. Matrix Factorization 
Feature-based matrix factorization [18] is an abstract 

matrix factorization model that uses features to describe the 
global bias and user/item factors. 
 

y!,! = µμ + γ!b!!∈! + α!b!!!∈! + β!b!!!∈! +
α!𝐩!!∈!

!( β!𝐪!!∈! )  

 

µ is the base score of the predictions. G,M,N are sets of global, 
user, item features respectively, and γ, α, β are global feature, 
user feature and item feature respectively. Different from 
general matrix factorization, we want to get the preference 
order of a user on a list of items. As a consequence, we use 
pair–wise ranking optimization as optimization criterion  
 

min ln 1 + e! !!,! !!!,! + regularization!!,!,!!∈!   
Where D = {< 𝜇, 𝑘, ℎ > |𝑘 ∈ 𝑃𝑜𝑠 µμ , h ∉ Pos(µμ)} 

Pos(u) : the user u gives positive reviews. 
 

In the case, we use training data attributes as items, and 
only one user who order the +1/-1 rating. It can reach 76.36 
AUC with no reduced data and 0.7644 AUC with reduced data 
in public score board. 

I. Gradient Boosting 
Gradient boosting [17] is a machine learning technique that 

assembles some of weak learners. It produces the additive 
model of the following form: 𝐹 𝑥 = 𝛾!ℎ!(𝑥)!

!!! , where 
ℎ!(𝑥) is so-called weak learner. For each iteration m, gradient 
boosting tries to find the ℎ!(𝑥) and 𝛾! that minimize the sum 
of the loss function: 𝐿(𝑦! ,𝐹!!! 𝑥! − ℎ!(𝑥!))!

!!!  and get 
𝐹! 𝑥! = 𝐹!!! 𝑥! + ℎ!(𝑥). The package we take advantage 
of is GradientBoostingRegressor in scikit-learn [5] . The weak 
learner that the regressor used is decision tree. We tried the 
parameters n!"#$%&#'(" ∈ 15,50  and   𝑚𝑎𝑥!"#$! ∈ 2,5  with 
step size 1. The best choice of parameter is n!"#$%&#'(" = 32 
and   𝑚𝑎𝑥!"#$! = 3 with 0.7669 AUC on the scoreboard. 
 

VII. COMPARISON 

A. Naïve Bayes 
The naive bayes algorithm is simpler than any other 

algorithms we mentioned before. We modeled each feature as 
normal distribution, but they might not be the case. It is worth 
noting it can handle missing value naturally. However, it 
didn’t perform very well in this experiment, thus it could only 
serve as a baseline algorithm. As for efficiency and scale, 
because we assume that the features are independent and 
follow normal distribution, we only calculate the mean and 
variance. As a result, the algorithm show short computation 
time and is able to handle large data.  

B. K Nearest Neighbor 
k nearest neighbor is another baseline algorithm people 

tend to use. The training time is very small. But predicting 
time is long if the data set is large. 

C. Linear Model 
In this project, we take AUC as measure so only the rank 

matters. For all linear model we use it is equal to just output 
wTx. We try some popular algorithm like linear regression, 
logistic regression, but in the end we think we could get better 
in-sample AUC by directly improve AUC by adjusting w. And 
indeed the latter method doing well. But it do not guarantee to 



reach a local maximum but at least it is still worth a try. The 
training process for Linear regression and Logistic regression 
is quick compare to other algorithm like svm. The great part 
about linear model is that VC dimension is low, so we don't 
need to care about over-fitting so much. For the naive 
optimize AUC method, the training time can be long, but we 
may get better in-sample AUC thus better test set AUC. 

D. SVM with RBF Kernel 
SVM is very popular algorithm. However, in this project, 

it didn’t perform very well. In terms of scale and efficiency, 
SVM is generally suited for medium size data set. If we use all 
of the training data to learn a SVM model, it could be 
extremely time-consuming. As a consequence, we use under-
sampling dataset instead. With the help of grid tool and unser-
sampling set, we can then perform parameter searching 
efficiently. 

E. Random Forest 
Random Forest algorithm is popular because it performs 

well in recently competitions [6]. In this project, the random 
forest algorithm is the best individual model that we have 
performed. Random forest algorithm uses decision tree, and 
can be parallel computing, so it can scale and train on large 
data set. The decision tree algorithm is efficient compared to 
others. In addition, we can compute feature importance to 
know the importance of each feature in the forest, which can 
help us dealing with missing values. 

VIII. CONCLUSION 
Random forest algorithm is the best individual model in our 

project. Additionally, the algorithm is very efficient. We think 
the best approach is using EM algorithm to recover the 
missing values, applying random forest regression and 
gradient boosting on the under-sampling data, and then 
blending the two models together. In the case of multiple 
models blending, we can use multiple models with some 
different parameters, and try different weighted sum such as 
normalization, standardization and some linear combination 
on the scoreboard, we may further improve the result. The best 
AUC score we achieved in this competition is 0.7711 on the 
public score board and 0.7546 on the hidden scoreboard. 
 

HOW WE BALANCE OUR WORK 
Our work are assigned roughly as below and we always help 

each other 
李文鼎: random forest, gradient boosting, naïve Bayes, 

Random Optimization with Linear Model 
郭佳翰: Support Vector Machine, linear regression, logistic 

regression, k nearest neighbor 
向思蓉: data preprocessing, feature selection, matrix 

factorization. 
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