
Machine Learning Final Project
Team: Anything

李文鼎

電機四 B98901093

向思蓉

電機所 R01921050

郭佳翰

電機四 B98901020

 Abstract—In the machine learning competition, we were
overwhelmed by the large dataset and some missing values. To,
cope with this, we used Expectation-Maximization algorithm and
Interpolation to deal with missing data. For the sake of time
efficiency, we preprocessed the training data with feature selection
and under sampling. Furthermore, we tried Naïve Bayes, Linear
Regression, Logistic Regression, Support Vector Machines using
RBF Kernel, Random Forest Regression and so on. Finally, we
blended the predictions from those algorithms and get the best
result (AUC on scoreboard = 0.771108).

Keywords—rank, classification, data process

I. INTRODUCTION
 In this competition, we were asked to predict whether
customers would click an ad provided by a search engine.
Training and test data were provided by the class. There is a
scoreboard that we can upload our predictions and get the AUC
evaluations (area under the ROC curve) of our predictions on
half of the test data. We decided to use cross validations to get
some parameters and chose the one with highest score on
scoreboard as the best choice.

II. MISSING DATA IMPUTATION
In the original dataset, we can easily find that there are many
missing values (about 10%). Because the missing data account
for a great proportion and every dimension has missing values,
it is impossible that we just throw it away. By the way, if we
just make imputation by replacing missing values with mean,
it will get really bad performance. Therefore we have
implemented the following methods.

A. Expectation and Maximization
A general approach for computing maximum likelihood

estimates from incomplete data is so-called EM algorithm [7],
which consists of iterative calculation involving two steps.

1. Prediction Step.

Given some estimate θ of the unknown parameters,
predict the contribution of any missing observation to the
sufficient statistics.

𝐱!(!) = E 𝐱! ! 𝐱! ! ;𝛍,𝚺) = 𝛍(!) + 𝚺!"𝚺!!
!!(𝐱! ! − 𝛍(!))

𝐱!(!)𝐱! !
′ = E 𝐱! ! 𝐱! ! ′ 𝐱! ! ;𝛍,𝚺) = 𝚺!! − 𝚺!"𝚺!!

!!𝚺!" + 𝐱!(!)𝐱! !
′

𝐱!(!)𝐱! !
′ = E 𝐱! ! 𝐱! ! ′ 𝐱! ! ;𝛍,𝚺) = 𝐱!(!)𝐱! ! ′

2. Estimation Step.
Use the predicted sufficient statistics to compute the

revised estimate of the parameters.

𝛍 = 𝐗 and 𝚺 = !

!
𝐗!𝐗!′!

!!! − 𝛍𝛍′

B. Interpolation and Extrapolation
In this method, we use extra/interpolation [8] to replace the
missing values. Missing data interpolation is a particular case
of data regularization, where the input data are already given
on a regular grid, and one needs to reconstruct only the missing
values in empty bins.

 From table 1, we can find that data imputation using EM
algorithm has better performance than Interpolation. It is
because that interpolation only uses linear model to replace the
missing values. As a result, we use data replaced with EM
algorithm in the following experiments. By the way, scaled
data gets worse performance than normal data. There may be a
reason that we scale up the noisy data and therefore get a worse
performance.

TABLE I. MISSING DATA WITH LOGISTIC REGRESSION

Method
AUC evaluation

Training AUC Score Board AUC

EM 0.7476 0.7633

EM* 0.7477 0.7632

Interpolation 0.7462 0.7579

Interpolation* 0.7460 0.7576

III. FEATURE SELECTION
For reason of data interpretation and reduction computation

time, we had no choice but to make feature selection and the
result is surprisingly good. The reason may be that the noisy
attributes are filtered out and we only use the most informative
attributes. The following are some methods we implement.

A. Principle Component Analysis
We use principle component analysis [9] to implement

orthogonal data transformation, which makes the variance of
the projected data to be maximum value. In PCA, The
variance of the projected data (transformed by projection
vectorω) which we want to maximize is

Var ω!x = E(ω!x − ω!µ)! = ω! ω

By some computation, the projected axes (eigenvectors) ω are
the solution of Σω = λω. (Σ is the covariance matrix of the
original data) Furthermore, we selected those eigenvectors (In

our experiment, 10) with eigen value larger than 1, and the
corresponding reconstruction rate

construction rate = !"#(!"#"$%"& !"#!$!"#$%)
!"#(!"!#$!"#!$!"#$%)

is about 0.99. We used the projected data as one of our dataset.

B. Predictive Ability and Redundancy
From result of some data analysis, we can detect that there

are some dependencies in the original 71-dim data which may
lead to high redundancy and bad training result. As a result,
we preferred dataset with high correlation with class (high
predictive ability) label but low correlation between each two
dimensions (low redundancy) as our ideal processed training
source. With the help of CfsSubsetEval filter of WEKA [10],
we use full data and 5 cross validation set respectively to get
the appropriate subset of the original dataset.

C. Information Gain
Information gain, by definition, is the change in

information entropy from a prior state to a state that takes
some information as given.

IG class, attribute = H class − H(class|attributes)

With the help of InfoGainAttributeEval filter of WEKA [10],
we use full data and 5 cross validation set respectively to get
the appropriate subset of the original dataset.

We use the above methods to implement feature selection, and
Table 2 shows that the performance using EM, logistic
regression and one of the feature selection method together.
We can find that there is a trend that more attributes will result
in better performance, except PCA. Surprisingly, the
performance of PCA with 10-dim transformed data is better
than the one with 20-dim and even 71-dim data. It is probably
because that PCA makes the eigenvector with larger eigen
value more important, thus the other eigenvectors may be
noisier. Besides, the performance of 25-dim data selected by
CfsSubsetEval is almost the same as that of 39-dim data
selected by InfoGainAttributeEval. There may be a reason that
CfsSubsetEval stepwise optimizes the criterion, but
InfoGainAttributeEval uses greedy algorithm.

IV. SAMPLING

A. Under-Sampling
It is obvious that the number of +1 and -1 label in the

training set is extremely unbalanced (1816/38184). For a
binary classification, if the class labels are heavily unbalanced,
then the prediction will be heavily biased to majority class. To
avoid this biased problem, we sample the dataset with equal
+1 and -1 labels. That is to say, we filter out some data of the
majority class to make a sub training set.

B. Over-Sampling
There is another way to make a balanced data set from an

unbalanced data set. If we duplicate a minority data many
times to generate a bigger data set, we can make the number of
data of each class roughly the same. We mostly use under-

sampling method since using small data set during training is
more efficient. According to [11], there is no major difference
between using over-sampling, under-sampling or using both at
the same time. Therefore, we choose under-sampling, which is
the most efficient. We could repeat the under-sampling and
training procedure multiple times to obtain different models,
and then choose the best one based on the results of cross
validation or doing blending. Therefore, by using under-
sampling which results in small training set, we would not lose
much information.

TABLE II. FEATURE SELECTION WITH LOGISTIC REGRESSION
AND EM

Method
AUC evaluation

Training AUC Score Board AUC

PCA(10) 0.7405 0.7629

PCA(20) 0.7427 0.7604

Predictive Ability(all 16) 0.7437 0.7606

Predictive Ability(5CV 25) 0.7454 0.7631

Information Gain(all 25) 0.7439 0.7635

Information Gain(all 39) 0.7454 0.7634

Information Gain(5CV 41) 0.7455 0.7631

V. VALIDATION
We use 5-fold cross validation and take the result on

scoreboard as our validation method. We find that the result of
5-fold cross validation has a high variance, that is, the 5
validation AUC from the 5-fold cross validation could be very
different. The difference between maximum and minimum of
AUC can be as high as 0.05.

We think it is because the number of data with label +1,
1816, is already small, and it gets even smaller if further
divided by 5. Although the number of label -1 data is big,
small number of label +1 data would make the result not close
to the final test set AUC. Since the number of label +1 data is
small, we think we cannot afford to let the validation set
bigger, which would result in smaller number of +1 label in
training set. Thus, we believe that the cross validation does not
accurately reflect the test-AUC. We think that if we want to
improve our performance on the scale of 0.001~0.01, then
cross validation is not really helpful. Therefore, we use cross
validation to ensure that the performance pass our base line
(AUC=0.73~0.74). We would roughly find the parameter
which gives us good results on cross validation and then we
fine tune the parameter by using the scoreboard result.

However, using the result on the scoreboard may be
accompanied by the risk of over-fitting. We think the public
test set on the scoreboard is quite big as it is roughly on the
same scale as number of training data, and equals to the
number of hidden test data. As a result, we believe we can
trust the scoreboard result and use it as validation to improve
our performance as long as we do not use slow cheating to get
the public test set data.

To address these problems, we plot the figure as follows:
We assume that we use scoreboard to do model selection and
select the model which performs best on the public test set,
and we plot the hidden test set AUC of that model accordingly.
These results are obtained from the scoreboard. We can see
that the public test set AUC is higher than the hidden test set
AUC. However, as we improve our public test set AUC, the
hidden test set AUC improves as well most of the time. Thus,
we can say that the method we use is not over-fitting badly.
Overall, using cross validation and then using scoreboard as
validation indeed improve our hidden test AUC.

VI. CLASSIFICATION

A. Naïve Bayes
Naïve Bayes [12] assumes that the behavior of a particular

feature of a class is unrelated to that of the other feature of the
class, when given the class. Naïve Bayes has an advantage that
it only requires a small amount of time to get the parameters,
which are means and variances of each feature. Calculating
parameters in aspect of statistical, naïve Bayes can ignore
missing values in the dataset, which means that we can avoid
the uncertainty caused by replacing missing values. Assuming
that every pairs of features are independent, we can get

𝑃 𝑦 = 𝑐 𝒙 = !
!
𝑃(𝑦 = 𝑐) 𝑃(𝑥!|𝑦 = 𝑐)!

!!!

Implementing naïve Bayes in our situation, we can get the
expectation:

𝐸 𝒙 = −1 ∗ 𝑃 𝑦 = −1 𝒙 + 1 ∗ 𝑃 𝑦 = 1 𝒙
 = 2 ∗ !

!
𝑃(𝑦 = 1) 𝑃 𝑥! 𝑦 = 1 − 1!

!!!

Noted that
2

𝑍
 and -1 can be ignored because AUC only takes

the order of the samples into consideration. In the training step,
we calculate 𝑃 𝑦 = 1 = (# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 1)/
(𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠), 𝜇𝑖 and 𝜎𝑖, which are means and
variances of each feature of the samples in class 1. Missing
values were skipped when calculating means and variances. In
the step of test, for each sample and each feature, we evaluate

𝑃 𝑥! 𝑦 = 1 = !

!!!!
!
𝑒
!
(!!!!!)

!

!!!
!

Then we calculate the prediction score of a sample

𝑃(𝑦 = 1) 𝑃(𝑥!|𝑦 = 1){!: !! !" !"# !"##"$%}

The probability of the feature with missing value is ignored
[4]. The model achieves 0.7467 AUC on the public scoreboard.

B. Linear Regression
Linear regression uses the hypothesis set that contains all

kinds of linear combinations of the components of x and tries
to minimize the squared error 𝐸𝑖𝑛 ℎ =

1

𝑁
(ℎ 𝒙𝑛 −𝑁

𝑛=1

𝑦0)
2. For tuning, we decided to use ridge regression. The

solution can be calculated simply by the formula: 𝑤𝑟𝑒𝑔 =

(𝑍𝑇𝑍 + 𝜆𝐼)−1𝑍𝑇𝒚. It has perfect computation efficiency and
there is no parameter other than 𝜆 for regularization, which
means we can get the best choice of parameter easily.

Trying 𝜆 from 0 to 60 with 0.5 step size, Figure 1 shows
the best choice is 𝜆 = 22.5, and the performance of ridge
regression on scoreboard is AUC=0.7615.

Fig. 1. Ridge Regression: 𝜆 versus AUC

C. Logistic Regression
Given input data x and weight w, the logistic regression
algorithm models the classification model by

P y = ±1 𝐱,𝐰 = !
!!!"# (!!(𝐰!𝐱))

 ,

where y is the classification label. To reduce model
complexity and to avoid over-fitting, we add the regularization
term !

!
𝐰!𝐰 into the minimization criterion

min𝐰
!
!
𝐰!𝐰 + C log (1 + exp (−y!(𝐰!x!)))!

!!! ,

where C is the regularization parameter. We use the scikit-
learn package [5] to solve the problem. The model achieves
0.7616 AUC on public scoreboard and 0.7402 AUC on the
hidden scoreboard.

D. Random Optimization with Linear Model
If we use linear model, it is better to optimize in-sample

AUC rather than other error functions. Because AUC is not
differentiable and not convex, we use a naive method
commonly used when we have no idea about the function we
want to optimize. We randomly initial w, and then obtain v
from Gaussian distribution (0,0.001). If w’=w+w.*v is better
than w in terms of AUC, update w by w’. [13]

E. K Nearest Neighbor
K-nearest neighbor is the method to find the most similar k

training data of a test data point and to weight the k data
linearly as output result. We use scikit-learn package [5],
which has k-nearest-neighbor implementation. The similarity
function has something to do with Euclidean distance of two
data on the feature space. There are two options for weight,

uniform and distance. The uniform weighted option uniformly
sums up the k neighbors, and the distance-weighted option
uses the inverse of distance between two data on the feature
space as weight. For the classification, we output the
percentage of k neighbors being +1; for the regression, we
output the linearly weighted sum of label y as output. We use
EM algorithm to recover missing data and then use scikit-learn
[5] to perform k-nearest neighbor algorithm. The model
achieves 0.7645 AUC on the public scoreboard.

TABLE III. K NEAREST NEIGHBOR OF DIFFERENT K AND
CORRESPONDING SCOREBOARD AUC

Without under-
sampling

With
under-sampling

weighted 1/distance Weighted uniform wieghted

K Scoreboard
AUC K Scorebo-

ard AUC K Scorebo-
ard AUC

e+04 0.7632 1000 0.7632 300 0.7633
4000 0.7630 1500 0.7628 270 0.7636
2000 0.7628 1204 0.7629 250 0.7645
1000 0.7592 900 0.7632 -- --
700 0.7568 300 0.7624 -- --

F. Support Vector Machine
We chose C-SVM and RBF (radial basis function) kernel.

We used RBF kernel because it only needs one parameter for
us to find the best one and its numerical range is always in [0,
1], which means it is more numerically stable than polynomial
and linear kernel [1][2].

We used libsvm [3] as our analyzing tool. In order to make
use of “grid.py” tool in the package, we change some code and
make AUC instead of precision as the output. First, we tried
parameter c in logistic scale from 2! to 2!", 𝛾 in logistic scale
from 2!!" to 2!" and the step size in log scale is 5. Figure 2
shows that the best choice seem to locate in the region that
𝑐 ∈ 2!", 2!" , 𝛾 ∈ [2!!", 2!!"]. Therefore, we tried parameter
c in log scale from 2!" to 2!", 𝛾 in logistic scale from 2!!" to
2!" and the step size in logistic scale is 1. According to Figure
3, the best choices of parameters are 𝑐 = 2!" and 𝛾 = 2!!"
and we can achieve 0.7614 AUC on the scoreboard.

G. Random Forest
Random forest is an ensemble method constructed from

decision tree. We use random forest in the scikit-learn package,
which uses CART (classification and regression tree) for
decision tree [15]. The CART algorithm splits the
source set into subsets based on minimizing impurity function
(We use Gini function in the as impurity function.) This
process is repeated on each subset in a recursive manner
called recursive partitioning. Then, we use boosting method,
which uses sampling with replacement to construct different
training set and to aggregate decision trees.

By the way, when reaching terminals (leaves), the
probability measure we use for classification tree of each class
is proportional to the number of each class in the leaf. To get
the better AUC on scoreboard, we use probability measure
instead of +1/-1label as our output. For regression tree, we use
minimum square error improvement as impurity function[].

TABLE IV. RANDOM FOREST WITH 200 DECISION TREES

Classification Criterion Regression Criterion

With US Without US With US Without US

depth CV AUC CV AUC CV AUC CV AUC

1 0.7298 0.7066 0.7303 0.6896

2 0.7363 0.7418 0.7393 0.7454

3 0.7377 0.7435 0.7358 0.7466

4 0.7375 0.7438 0.7348 0.7455

5 0.7373 0.7444 0.7335 0.7447

6 0.7376 0.7438 0.7339 0.7447

7 0.7360 0.7434 0.7320 0.7440
8 0.7344 0.7421 0.7322 0.7428

We used cross validation to determine the range of

parameter we want to focus. As in Table 4, we can see that the
number of tree is not really matter much, so we set the number
of tree to 200 and the maximum tree depth should be 2~4, not
too large. With these rules in mind, we can then tune the

Fig.2. result of libsvm grid

Fig.3. result of libsvm grid (preciser)

parameters (e.g. minimum number to split a node for
regularization) using public test set score on the scoreboard.

In the preprocessing step, we used the EM algorithm to
recover missing values, under-sampled different dataset, and
chose some datasets that perform well on cross validation set
and scoreboard. Training on the under-sampling data set with
equal number of y=+1 and y=-1 data, Random Forest
Regression (n_estimators=200, max_depth=4,
min_samples_split=750, min_samples_leaf=437, n_jobs=7)
achieves 0.7701 on the public scoreboard and 0.7521 on the
hidden scoreboard. In addition, Random Forest Classifier
(n_estimators=2000, max_depth=6) achieves0.7669 on the
public scoreboard and 0.7478 on the hidden scoreboard.

We can use random forest to do feature selection as well.
For each node we can add importance on a feature as follows.
If using Gini function as impurity function, the difference of
the original error and the error of the split times the number of
samples that passed the node will be added to that feature. If
using squared function, improvement in squared error will be
added [16].

Besides, by computing feature importance, we can see that
the 25th feature is the most important feature in using random
forest. Therefore we think if we heavily depend on that feature,
missing values on that feature would cause high error. To
dealing with this problem, we thought we can construct two
models. We construct two datasets, one is those data whose
25th feature is not missing and the other one is using all data
but filtering out the 25th feature such that there are only 70
features left. By doing so, we train two random forest model
h1, h2 accordingly and use h(x) below as the prediction
function.

h x =
h! x , if the 25th feature not missing
h! x , if the 25th feature missing

With that, we can avoid relying on missing 25th feature,
which is actually help to improve the performance of random
forest. The model achieves 0.7683 on the public score board
and 0.7487 on the hidden score board.

Fig.4. One of the decision tree generated by random forest.

H. Matrix Factorization
Feature-based matrix factorization [18] is an abstract

matrix factorization model that uses features to describe the
global bias and user/item factors.

y!,! = µμ + γ!b!!∈! + α!b!!!∈! + β!b!!!∈! +
α!𝐩!!∈!

!(β!𝐪!!∈!)

µ is the base score of the predictions. G,M,N are sets of global,
user, item features respectively, and γ, α, β are global feature,
user feature and item feature respectively. Different from
general matrix factorization, we want to get the preference
order of a user on a list of items. As a consequence, we use
pair–wise ranking optimization as optimization criterion

min ln 1 + e! !!,! !!!,! + regularization!!,!,!!∈!
Where D = {< 𝜇, 𝑘, ℎ > |𝑘 ∈ 𝑃𝑜𝑠 µμ , h ∉ Pos(µμ)}

Pos(u) : the user u gives positive reviews.

In the case, we use training data attributes as items, and
only one user who order the +1/-1 rating. It can reach 76.36
AUC with no reduced data and 0.7644 AUC with reduced data
in public score board.

I. Gradient Boosting
Gradient boosting [17] is a machine learning technique that

assembles some of weak learners. It produces the additive
model of the following form: 𝐹 𝑥 = 𝛾!ℎ!(𝑥)!

!!! , where
ℎ!(𝑥) is so-called weak learner. For each iteration m, gradient
boosting tries to find the ℎ!(𝑥) and 𝛾! that minimize the sum
of the loss function: 𝐿(𝑦! ,𝐹!!! 𝑥! − ℎ!(𝑥!))!

!!! and get
𝐹! 𝑥! = 𝐹!!! 𝑥! + ℎ!(𝑥). The package we take advantage
of is GradientBoostingRegressor in scikit-learn [5] . The weak
learner that the regressor used is decision tree. We tried the
parameters n!"#$%&#'(" ∈ 15,50 and 𝑚𝑎𝑥!"#$! ∈ 2,5 with
step size 1. The best choice of parameter is n!"#$%&#'(" = 32
and 𝑚𝑎𝑥!"#$! = 3 with 0.7669 AUC on the scoreboard.

VII. COMPARISON

A. Naïve Bayes
The naive bayes algorithm is simpler than any other

algorithms we mentioned before. We modeled each feature as
normal distribution, but they might not be the case. It is worth
noting it can handle missing value naturally. However, it
didn’t perform very well in this experiment, thus it could only
serve as a baseline algorithm. As for efficiency and scale,
because we assume that the features are independent and
follow normal distribution, we only calculate the mean and
variance. As a result, the algorithm show short computation
time and is able to handle large data.

B. K Nearest Neighbor
k nearest neighbor is another baseline algorithm people

tend to use. The training time is very small. But predicting
time is long if the data set is large.

C. Linear Model
In this project, we take AUC as measure so only the rank

matters. For all linear model we use it is equal to just output
wTx. We try some popular algorithm like linear regression,
logistic regression, but in the end we think we could get better
in-sample AUC by directly improve AUC by adjusting w. And
indeed the latter method doing well. But it do not guarantee to

reach a local maximum but at least it is still worth a try. The
training process for Linear regression and Logistic regression
is quick compare to other algorithm like svm. The great part
about linear model is that VC dimension is low, so we don't
need to care about over-fitting so much. For the naive
optimize AUC method, the training time can be long, but we
may get better in-sample AUC thus better test set AUC.

D. SVM with RBF Kernel
SVM is very popular algorithm. However, in this project,

it didn’t perform very well. In terms of scale and efficiency,
SVM is generally suited for medium size data set. If we use all
of the training data to learn a SVM model, it could be
extremely time-consuming. As a consequence, we use under-
sampling dataset instead. With the help of grid tool and unser-
sampling set, we can then perform parameter searching
efficiently.

E. Random Forest
Random Forest algorithm is popular because it performs

well in recently competitions [6]. In this project, the random
forest algorithm is the best individual model that we have
performed. Random forest algorithm uses decision tree, and
can be parallel computing, so it can scale and train on large
data set. The decision tree algorithm is efficient compared to
others. In addition, we can compute feature importance to
know the importance of each feature in the forest, which can
help us dealing with missing values.

VIII. CONCLUSION
Random forest algorithm is the best individual model in our

project. Additionally, the algorithm is very efficient. We think
the best approach is using EM algorithm to recover the
missing values, applying random forest regression and
gradient boosting on the under-sampling data, and then
blending the two models together. In the case of multiple
models blending, we can use multiple models with some
different parameters, and try different weighted sum such as
normalization, standardization and some linear combination
on the scoreboard, we may further improve the result. The best
AUC score we achieved in this competition is 0.7711 on the
public score board and 0.7546 on the hidden scoreboard.

HOW WE BALANCE OUR WORK
Our work are assigned roughly as below and we always help

each other
李文鼎: random forest, gradient boosting, naïve Bayes,

Random Optimization with Linear Model
郭佳翰: Support Vector Machine, linear regression, logistic

regression, k nearest neighbor
向思蓉: data preprocessing, feature selection, matrix

factorization.

REFERENCES
[1] draft CH8 p.280
[2] H.-T. Lin and C.-J. Lin: A study on sigmoid kernels for SVM and the

training of non-PSD kernels by SMO-type methods. Technical report,
Department of Computer Science, National Taiwan University, 2003

[3] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1--27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[4] Kohavi, R., B. Becker, and D. Sommerfield. 1997. Improving Simple
Bayes. In: Proceedings of the European Conference on Machine
Learning.

[5] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,
pp. 2825-2830, 2011.

[6] http://datascience101.wordpress.com/2012/05/31/increase-your-kaggle-
score-with-a-random-forest/

[7] J. F. Hair, Jr., B. Black, B. Babin, R. E. Anderson, and R. L. Tatham,
Multivariate Data Analysis, 6th ed., Prentice Hall, 2005 Ch.5

[8] Damien Garcia,
http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-
over-missing-data-in-n-d-arrays/content/inpaintn.m

[9] Jolliffe, I. T. (1986). Principal Component Analysis. Springer-Verlag. pp.
487. doi:10.1007/b98835. ISBN 978-0-387-95442-4.

[10] G. Holmes; A. Donkin and I.H. Witten (1994). "Weka: A machine
learning workbench". Proc Second Australia and New Zealand
Conference on Intelligent Information Systems, Brisbane, Australia.

[11] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall and W. Philip
Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique,
Journal of Artificial Intelligence Research 16 (2002) 321–357.

[12] George H. John and Pat Langley (1995). Estimating Continuous
Distributions in Bayesian Classifiers. Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence. pp. 338-345.
Morgan Kaufmann, San Mateo.

[13] Wikipedia- Random optimization,
http://en.wikipedia.org/wiki/Random_optimization

[14] Scikit-learn: sklearn.neighbors.NearestNeighbors
http://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.
html#sklearn.neighbors.NearestNeighbors

[15] Scikit-learn: Decision Trees
http://scikit-learn.org/stable/modules/tree.html

[16] Scikit on GitHub
https://github.com/scikit-learn/scikit-
learn/blob/master/sklearn/tree/_tree.pyx

[17] Wikipedia – Gradient Boosting
http://en.wikipedia.org/wiki/Gradient_boosting

[18] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen,Zhao Zheng,
Yong Yu. SVDFeature: A Toolkit for Feature-based Collaborative
Filtering. Journal of Machine Learning Research. 13:3585−3588, 2012

