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Abstract 
This paper reports the first known effort to automatically align 
the spoken utterances in recorded lectures with the content of 
the slides used. Such technologies will be very useful in 
Massive Open On-line Courses (MOOCs) and various recorded 
lectures as well as many other applications. We propose a set of 
approaches considering the problem that words helpful for such 
alignment are sparse and noisy, and the assumption that the 
presentation of a slide is usually smooth and top-down across 
the slide. This includes utterance clustering, entropy-based 
word filtering, reliability-propagated word-based matching, and 
the structured support vector machine (SVM) learning from 
local and global features. Initial experimental results with the 
lectures in a course offered in National Taiwan University 
showed very encouraging results as compared to the baseline 
approaches. 
Index Terms:  alignment, structured SVM, global features 

1. Introduction 
With the fast increasing Massive Open On-line Courses 
(MOOCs) and the widely available recorded conference 
lectures, it is possible today for people worldwide to learn 
desired knowledge from recorded courses and lectures via 
Internet, which is creating a globalized learning-on-demand 
environment. In many of such recorded lectures, very often it is 
not recorded which part of the slide each spoken utterance is 
referring to, although this can be done if the lecturer really 
intends to do so. But such alignment is very helpful to learners 
when listening to the recorded lectures. 

This paper reports the first known effort to handle the above 
problem, i.e. to automatically align the spoken utterances with 
the presentation slide content as shown in Figure 1. In Figure 1, 
the content of a slide � is divided into sections � = {��|� =1,2, … , |�|} primarily based on the subtitles on the slide, with 
the corresponding utterance set �  for the slide, � = {��|� =1,2, … , |�|} . The goal here is to align each ��  in �  with a 
section �	  in � which ��  is referring to, or to obtain a set of 
aligned pairs, 
(�, �) = �< ��, �� > |� = 1,2, … , |�|�,              (1) 

 
where �� is the index j for the section �	 which �� is aligned to. 
Here � is first divided into consecutive utterance clusters  � ={�	|� = 1,2, … , |�|}, each including one to several utterances. 
For example, in Figure 1 �� = {��, ��, ��} is the first cluster 
including the first three utterances, etc. By properly aligning 
each cluster �	  of utterances with a section of the slide, the 
learner can feel much easier in learning with the recorded 
lectures. Efficient solution to this problem is useful not only to 
MOOCs and recorded lectures, but in many other applications 
such as spoken content retrieval and question answering based 
on spoken content. 

Previously reported works related to slide alignment were 
primarily focused on aligning presentation slides (or plus the 
spoken part) with the sections of the corresponding text 
document such as technical papers or teaching materials. In 
other words, the unit of alignment in these cases is a slide, and 
the alignment is over a whole presentation, such as aligning the 
individual slides in a talk with the paper for the talk. But the 
work reported here is for the alignment “within a slide”, or a 
cluster of several utterances aligned with a section of the slide. 
Most of the previously reported works tackled the alignment 
problem by matching the words [1, 2]. Some work further 
considered jointly text and images [3], while other works 
investigated the similarity measures, query expansion [4], and 
the short segment matching [5]. Still some other related works 
included information extraction from slides [6] and alignment 
between corpora [7]. 

The alignment within a slide between utterances clusters and 
sections of the slide is in general difficult, because a slide may 
be presented by a large number of utterances, while each 
utterance includes only limited number of words. So an 
utterance may include a keyword of the slide which appears 
repeatedly in various parts of the slide, while many other words 
in the utterances very probably never appear in the whole slide. 
This is referred to as the sparse/noisy word problem here, and 
is why approaches directly matching the words are not very 
useful. So we propose to divide the utterances into consecutive 
clusters {�	|� = 1,2, … , |�|} and the slide content into sections {��|� = 1,2, … , |�|} and try to align �	 with ��. The words in a 
cluster can be less sparse than an utterance, but more noisy. The 
approaches here are also benefited by the sequential smoothness 
assumption for presentation of slides, i.e., the presenter usually 
tends to finish a section of the slide before moving to another 
section, and very often follows the top-down section sequence 
in the slide, although not always. 

The proposed approach is shown in Figure 2. The pre-
processing includes utterance clustering and entropy-based 
word filtering. The output can then be used for both the 
reliability-propagated word-based matching and the structured 
SVM [8, 9, 10, 11, 12, 13]. The structured SVM can be trained 
either with a set of human-labeled data, or the output of the 
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reliability-propagated word-based matching. In the latter case, 
the whole process can be completely unsupervised. The scores 
of the reliability-propagated word-based matching and the 
structured SVM are then integrated. 

2. Proposed Approach 
We consider the problem defined in Figure 1. Here, in the initial 
work we assume each utterance �� is the one-best recognition 
output or a word sequence, although probably better represented 
as a lattice. 

2.1. Pre-Processing 
This is to try to deal with the sparse/noisy word problem. 

2.1.1. Utterance Clustering 
By dividing all utterances into consecutive clusters as shown in 
Figure 1, a cluster can have less sparse words (although possibly 
more noisy), while aligning the utterances clusters with the 
sections of the slides may meet the sequential smoothness 
assumption to a certain degree. We simply calculate at every 
utterance boundary the cosine similarity between the two 
utterances on both sides based on tf-idf [14, 15, 16] vectors for 
words, with utterances taken as the documents for idf evaluation. 
Those boundaries with the similarity below a threshold ����� 
determined with a development set is then taken as the cluster 
boundary. This produces the  cluster set  � as in Figure 1,  � = {��|� = 1,2, … |�|},                              (2) 

where �� is the i-th cluster. In this way the desired alignment 
(�, �) in (1) is reduced to  
(�, �) = �< ��, �� > |� = 1,2, … , |�|�,              (3) 

where �� is the index j for section �	 which �� is aligned to. 

2.1.2. Entropy-based word Filtering 
Here we remove some noisy words from the utterances. The 
basic idea is that if a word appears uniformly in all clusters, it 
is not useful in alignment even if it is a keyword. If a word 
appears frequently only in one or few clusters but not in other 
clusters, it will be useful in alignment. This concept is exactly 
the entropy useful in many areas [17, 18]. Let !(", �) be the 
term frequency of a word "  in a cluster �� , and #(", �) =!(", �)/ ∑ !(", %)|�|&'�  is the percentage of the word " 
appearing in the cluster �� out of the entire slide �. The entropy 
of the word " over the cluster set � is then 

*("|�) = − + �(", �) -.0#(", �)|�|
�'� .                (4) 

Higher entropy *("|�) indicates the word " is less useful in 
alignment. So words with *("|�)  above a threshold ��678 
determined with a development set is therefore simply deleted. 

2.2. Reliability-propagated Word-based Matching 
Given each utterance cluster ��  with noisy words deleted we 
first evaluate the term frequency vector (idf not used here since 
the words already selected by entropy), and then compute the 
cosine similarity with the tf-idf vectors for all sections (sections 
taken as documents in idf evaluation) of the slide, giving ���9:��, �	;, � = 1,2, … , |�|� . Naturally ��  can be aligned to 
the section �	 maximizing ��9:��, �	;, i.e., �� = �?0 9�@	 ��9:��, �	;,                        (5) 

where �� is the index for the section which �� is aligned to as in 
(3). However, the sparse/noisy word problem makes ��9:��, �	; in (5) less reliable, so we enhance it as below. 

We define a cluster ��  to be reliable if the ratio of the 
maximum and second maximum of ��9:��, �	;  exceeds a 
threshold ��B6C determined with a development set, or 9�@	 ��9:��, �	;2DE 9�@	 ��9:��, �	; ≥ ��B6C,                  (6) 

in which cases ��9:��, �	;  can be used directly in (5). 
Otherwise ��9:��, �	;  should be enhanced in the following 
way. 

When a cluster �� is not reliable because (6) is not satisfied, 
let ��H&  represents the nearest reliable cluster before �� 
satisfying (6) which is aligned to a section ��IJ based on (5), 
and ��KC represents the nearest reliable cluster after �� aligned to ��LM . It is then more likely that the unreliable cluster ��  is 
referring to a section close to ��IJ  or ��LM  based on the 
sequential smoothness assumption. This implies ��9:��, ��IJ; 
and ��9:��, ��LN; for this unreliable cluster ��  may be relat-
ively more reliable, and the farther a section �	 is from ��IJ or ��LN, the less reliable ��9:��, �	; is. This leads to the reliability 
propagation weighting scheme in the following. ��9O:��, �	; = 12 [?�H&(�) + ?�KC(�)]��9:��, �	;, (7) 

?�H&(�) = R    1,             if j = aSHT        1 − b,             if j =  aSHT ± 1     1 − b − md,             if j = aSHT ± m, m ≠ 1,      (8) 

where ?�H&(�) is the reliability propagation weight based on the 
nearest reliable cluster ��H& before ��, b, d are two discounting 
factors, 0 < �, E < 1.0,  and m is an integer. ?�KC(�) is similarly 
defined as in (8). The values of ?�H&(�) in (8) imply ��9:��, �	; 
is assumed reliable for �	 = ��IJ, but slightly discounted if �	 
is next to ��IJ , and further discounted if �	  is farther away 
from ��IJ. The weight in (7) implies the value of ��9:��, �	; 
is enhanced by the two reliable clusters on both sides with 
reliability propagated from ��IJ  and ��LN . ��9O:��, �	; in (7) 
is then the enhanced similarity to be used in (5) for those 
clusters not satisfying (6). The parameters b, d in (8) can be 
tuned with a development set. 

2.3. Structured Support Vector Machine (SVM) 
Here, we consider the alignment as an optimization problem, in 
which the desired alignment 
(�, �)  in (3) is the one 
maximizing the following objective function X[
(�, �)] among 
all possible alignments, X[
(�, �)] = + Y:��, ��; + Z[
(�, �)]\∈� ,          (9) 

Figure 2  The proposed approach 
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where Y:��, ��; is the local objective function for aligning �� 
with �� , and Z[
(�, �)]  is the global objective function 
considering the whole alignment structure. We express Y:��, ��;  and Z[
(�, �)]  as linear functions with weight 
vectors "C`̀`̀⃑ and "e`̀`̀`⃑  to be learned based on some training set: Y:��, ��; = "C`̀`̀⃑ ∙ !C:��, ��;,                      (10) Z[
(�, �)] = "e`̀`̀`⃑ ∙ !e[
(�, �)],                   (11) 

where !C:��, ��;  is the local feature vector representing the 
alignment relationship between ��  and �� , and !e[
(�, �)] is 
the global feature vector representing the whole alignment 
structure. These features will be explained in detail in section 
2.4 below. The local objective function encourages better 
individual alignment between ��  and �� , while the global 
objective function encourages better overall alignment 
considering all alignment pairs < ��, �� >, � = 1,2, … , |�|  in 
(�, �) jointly. 

The above optimization problem can be solved using 
structured SVM, assuming the availability of a training set, �[< ��, �� >, 
h(��, ��)]|� = 1,2, … , D�, where < ��, �� > is the 
i-th training example for slide ��  and the corresponding 
utterance cluster set ��, and 
h(��, ��) is the reference alignment 
relationship for < ��, �� > . As will be shown below, the 
training set can be either a manually labeled set or those 
obtained with the pre-processing and reliability-propagated 
word-based matching as described above. In the latter case the 
structured SVM can be actually trained in a completely 
unsupervised way. With the training set, the goal here is to 
jointly learn the weight vectors  "C`̀`̀⃑ and "e`̀`̀`⃑  such that for every 
training example < ��, �� > the reference alignment 
h(��, ��) 
gives the highest objective function score X[
(��, ��)] among 
all possible alignments 
(��, ��) using structured SVM [9, 10, 
11, 12, 13]: 9�DkM`̀ `̀ ⃑ ,kl`̀`̀`̀⃑

12 n‖"C`̀`̀⃑‖� + p "e`̀`̀`⃑ p�q + rD + s�7
�'� ,                    (12) 

t. u. ∀�, ∀ 
(��, ��), 
(��, ��) ≠ 
h(��, ��) ∶                           X[
h(��, ��)] − X[
(��, ��)] ≥ -[
(��, ��)] − s�, s� ≥ 0. 
The constraints in (12) require that for each training example <��, �� >, the differences between the objective function scores 
of the reference alignment 
h(��, ��)  and any other possible 
alignment 
(��, ��)  are larger than a margin -[
(��, ��)] 
padded by a per-instance slack of s�, where -[
(��, ��)] is a loss 
function when 
(��, ��) is mistaken as the alignment. Hence, 
when 
(��, ��) is a poorer alignment, the margin will be larger, 
or there would be less chance for it to be mistaken as the 
alignment. In the experiments reported below we define -:
(��, ��);  as 1 − ���(
(��, ��)) , where ���(
(��, ��))  is 
the alignment accuracy or recall, i.e., the percentage of the 
alignment pairs < �&, �	 > in the reference alignment 
h(��, ��) 
which also appear in 
(��, ��) .  r  in (12) is a constant for 
tradeoff between the slack variable s�  and the norm of the 
weighting vectors to be learned. The optimization problem of 
(12) is a quadratic programming problem with huge number of 
constraints, but an approximate solution can be found in 
reasonable time with the cutting plane algorithm by selecting a 
set of active constraints out of all constraints [12]. 

2.4. Features used in the structured SVM 
Here we describe the local feature vector !C(< ��, �	 >) in (10) 
and the global feature vector !e[
(�, �)] in (11). 

2.4.1. Local Features 
The local features in the local feature vector !C(< ��, �	 >) 
include the following: 
� Cosine similarity between �� and �	 based on the tf-idf. 
� Number of distinct words that co-occur in  �� and �	. 
� ��9(��, �	) ∙ x(�, ��H&)  and ��9(��, �	) ∙ x(�, ��KC) . Assuming �� is not reliable as defined in (6), and ��H& and ��KC represent 

the nearest reliable clusters before and after �� as explained 
below (6), so ��H&  and ��KC  are the indices for the sections ��H& and ��KC are aligned to. x(9, D) = 1 if m=n and 0 else. 

� ��9(��H�, �	) ∙ ��9(��H�, ��)  and ��9(��K�, �	) ∙ ��9(��K�, ��) , 
where ��9(��H�, ��)  and ��9(��K�, ��)  are the cosine 
similarity between ��  and its neighboring clusters on both 
sides. 

� Number of distinct words that co-occur in �� and �	 but not 
occurring in any other sections. 

2.4.2. Global Features 
The global features in the global feature vector !e[
(�, �)] 
include the following: 
� Number of crossed alignment: number of alignment pairs < ��, �� > and < �	, ��y > such that � < � but �� > �	 . This 

is the number of times that the presentation order is reversed 
or the sequential smoothness assumption is violated. 

� Number of pairs < ��, �� > in 
(�, �) such that �� ≠ ��Lz 
normalized with |�| . This is the number of times ��K�  is 
aligned to a section different from the one �� is aligned to. For 
a slide with |�| = 5 , the most desirable sequential 
smoothness gives 80% for this feature, which means 4 times 
of section switching on the slide top-down. This feature 
penalizes departures from such a situation. 

� Normalized squared length difference: ∑ {�'�~|�| length (��) − D�[��, 
(�, �)]}� , where -�D0uℎ(��)  is the total 
number of words in the section ��  normalized to the total 
number of words in the slide, and D�[��, 
(�, �)]  is the 
number of utterances aligned to �� in 
(�, �) normalized to 
the total number of utterances in �. This feature assumes a 
longer section (with more words) should be explained with 
more utterances, therefore ideally this parameter should be 
close to zero. A larger value implies worse alignment quality. 

2.5. Score Integration 
The scores obtained with reliability-propagated word-based 
matching (section 2.2) and structured SVM (section 2.3, 2.4) 
can be integrated as in (13), 

�[
(�, �)] = X[
(�, �)] + � + ��9:��, ��;
|�|

�'� ,         (13) 

where ��9(��, ��) is the enhanced similarity in (7) if  �� is not 
reliable, or simply the similarity if ��  is reliable, and �  is a 
constant determined over a development set. 

3. Experiments 
3.1. Corpus and Experimental Setup 
We used the lectures for a course offered at National Taiwan 
University with a total length of 45 hours as the corpus for this 
research, along with a total of 193 slides completely in English. 
The spoken lectures were, however, in Mandarin-English code-
switching style, i.e. , the utterances were primarily in the host 
language of Mandarin, while the special terms and some other 
popularly used English words were produced in the guest 
language of English embedded in the Mandarin utterances [19]. 
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We deleted all Chinese words in the one-best recognition output 
and considered only English words, except the utterance 
clustering used both Chinese and English words. When an 
utterance cluster is completely empty because it includes only 
Chinese words, we used the alignment for the nearest cluster 
which is not empty as its alignment.  

The 45 hours of spoken lectures were segmented into 193 
spoken documents based on the 193 slides. 12 hours of them 
were used for acoustic model training and in-domain language 
model adaptation. The accuracy for the one-best ASR 
transcriptions for the remaining 33 hours was 88.0% [20]. Only 
38 spoken documents for 38 slides out of this testing set were 
used for alignment experiment below, for which relevance 
alignments were generated manually for each utterance.  

We used 4 documents out of the 38 as the development set 
for determining all the parameters needed. The rest 34 
documents were divided into 4 sets (9, 9, 8 and 8 documents) 
and used in 4-fold cross validation for testing the alignment 
accuracy, i.e. , testing each set using the structured SVM trained 
with the other three sets, and so on. For supervised approach we 
used the reference alignments of the training set to train the 
structured SVM. For completely unsupervised approach, we 
used the alignment results generated by the reliability-
propagated word-based matching to train the structured SVM. 
In both cases the utterance clustering and entropy-based word 
filtering were performed on the utterances first, and the 
structured SVM then tried to learn the alignment between the 
automatically generated clusters and the slide sections. 

Two baseline approaches were compared to here. Baseline 1 
aligned each utterance to a section randomly. Baseline 2 
performed the alignment for each utterance simply based on the 
similarity evaluated with tf-idf without utterance clustering, 
entropy-based word filtering, or any other approaches. 

3.2. Experimental Results 
All the results reported below are averaged alignment accuracy 
for utterances. It turned out that in average there were only 
3.204 sections per slide for the corpus tested here, which gave 
34.01% average accuracy for Baseline 1 of random alignment. 
The results are listed in Table 1. Column (a) is the results of 
Baseline 2 using cosine similarity with tf-idf but not any other 
processes, which is actually significantly better than Baseline 1 
of random alignment (34.01%), indicating that tf-idf is really 
useful although relatively simple. 

Columns (b), (c) and (d) are for completely unsupervised 
approaches, respectively for the reliability-propagated word-
based matching, structured SVM (trained with output of (b)), 
and the score integration. The results of supervised approaches 
trained with human-labeled reference alignment are listed in 
columns (e) and (f), respectively using structured SVM alone 
(column (e)) or with score integration (column (f)). 

We noted that the reliability-propagated word-based 
matching was in fact much better than Baseline 2 (columns (b) 
vs (a)), so the approaches presented in section 2.1 and 2.2 was 
really helpful. The unsupervised structured SVM was only 

slightly better (columns (c) vs (b)), probably because it was 
trained using the result of (b), therefore couldn’t do too much 
differently from what it learned from. The score integration was 
actually much better than its individual components (columns 
(d) vs (b), (c)), apparently because the two component 
approaches were quite different and complementary to each 
other, although one of them learned the output of the other. 

The supervised training of the structured SVM was able to 
offer much better results than unsupervised approaches 
(columns (e) vs (b) (c)), and the score integration was even 
better (columns (f) vs (e)), obviously because the structured 
SVM can not only learn from the individual alignments, but 
jointly consider the global features and local features. 

On the other hand, the results with ASR output (2nd row) were 
actually not too far from those using manual transcriptions (1st 
row) with almost the same trend, probably because the ASR 
accuracy for the single-speaker lectures was not very low. This 
indicated that the approaches proposed here could be useful for 
real lectures (with alignment accuracy close to or exceeding 
70% for all approaches in columns (b)-(f)), if the recognition 
accuracy was not very low. Furthermore, we note that the score 
integration results for unsupervised approaches (column (d)) 
were actually very close to (for manual transcriptions in 1st row) 
or even better than (for ASR output in 2nd row) the supervised 
structured SVM (column (e)). This not only verified the score 
integration was very strong in combining the strength of two 
very different component approaches, but indicated the 
practical feasibility of the proposed approaches because 
generating training sets with human-labeled alignment may be 
difficult, and unsupervised approaches are certainly much more 
attractive if the performance can be acceptable. 

Column (g) is the case very close to Baseline 2 in column (a) 
except utterance clustering was performed in addition and the 
tf-idf similarity was based on the clusters. We can see the 
utterance clusters did bring good improvements (columns (g) vs 
(a)) because it helped in the sparse/noisy word problem and 
considered the sequential smoothness assumption, but the 
entropy-based word filtering and reliability-propagated word-
based matching used in column (b) was actually much stronger 
(columns (b) vs (g)). This verified the approaches proposed in 
sections 2.1 and 2.2 are useful. Column (h) is very close to 
column (e), structured SVM with supervised training, but using 
only the local features without the global features. We can see 
without the global features what the structured SVM could do 
was much less (columns (h) vs (e)), so learning from both local 
and global features was important here. 

4. Conclusions 
In this paper, we present the first known effort for the alignment 
between the spoken utterances in lectures and the slide content 
by combing a set of approaches including structured SVM 
considering the sparse/noisy word problem and the sequential 
smoothness assumption for slide presentation. Experimental 
results were very encouraging. 

Utterance 
Transcriptions 

(a) 
Baseline 2 

Tf-idf 
Similarity 

Proposed Approaches Partial Tests 

Unsupervised Supervised (g) (h) 

(b) 
Word-based 

matching 

(c) 
Structured 

SVM 

(d) 
Score 

Integration 

(e) 
Structured 

SVM 

(f) 
 Score 

Integration 

(a) plus 
utterance 
clustering 

(e) with 
Global 

Features 
Excluded 

Manual 60.39% 74.74% 74.95% 76.58% 76.83% 77.16% 63.42% 73.41% 
ASR 58.43% 69.50% 70.28% 72.86% 71.26% 73.15% 60.51% 68.97% 

Table 1. Alignment accuracy for the proposed approaches compared to Baseline 2 based on tf-idf similarity. 
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