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Abstract—It takes very long time to go through a complete
online course. Without proper background, it is also difficult to
understand retrieved spoken paragraphs. This paper therefore
presents a new approach of spoken knowledge organization for
course lectures for efficient personalized learning. Automatically
extracted key terms are taken as the fundamental elements of
the semantics of the course. Key term graph constructed by
connecting related key terms forms the backbone of the global
semantic structure. Audio/video signals are divided into multi-
layer temporal structure including paragraphs, sections and
chapters, each of which includes a summary as the local semantic
structure. The interconnection between semantic structure and
temporal structure together with spoken term detection jointly
offer to the learners efficient ways to navigate across the course
knowledge with personalized learning paths considering their
personal interests, available time and background knowledge.
A preliminary prototype system has also been successfully devel-
oped.

Index Terms—course lectures, spoken content retrieval, speech
summarization, keyterm extraction

I. INTRODUCTION

The necessity of life-long learning in the era of knowl-
edge explosion together with the ever-increasing bandwidth
of Internet and continuously falling costs for memory bring
about the rapid proliferation of Massive Open Online Courses
(MOOCs). Instructors post slides and video/audio recording
of their lectures on on-line lecture platforms, and learners
can easily access the curricula. The worldwide online learners
working in different technical areas with different background
knowledge have widely varying learning requirements. For
example, the novices of a subject may need an effective way
to comprehend the high-level core concepts in the subject,
while some experts may need an easy way to review the
low-level details of a specific subtopic of the subject. As a
result, new techniques for personalized learning helping all
different learners properly utilize the curricula in their own
most efficient way and plan their own personalized learning
paths are highly desired but still missing for on-line lecture
platforms today.

A major difficulty for the many different learners to effi-
ciently utilize the many complete course lectures available over
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the Internet is that it may not be easy for people in the busy
world to spend very long time to go through a complete course
(e.g. it may include tens of hours). With recent advances of
spoken content retrieval [1], [2], it is now possible to search
over the on-line lectures for some specific topics based on the
audio information [3]–[6]. Good examples include MIT lecture
browser [3] and Speech@FIT lecture browser [4]. Such lecture
browsers enable the user to type a text query and receive a list
of spoken segments within the lectures containing the query
terms.

Direct retrieval over the course content for some specific
topics may not always be helpful to the learners. The course
content is usually semantically structured with one concept fol-
lowing the other. Without the background, it is often difficult
to understand a retrieved paragraph of a course. Without the
semantic structure of the content, it is difficult for the learners
to come up with suitable queries to search for the target topics.
Displaying the key terms extracted from lecture courses is an
effective way to present to the learners the core concepts in the
courses. FAU Video Lecture Browser displaying automatically
extracted key terms to help the interactive assessment of video
lectures [5] is a good example of such approaches.

Some on-line lecture platforms can summarize the au-
dio/video recordings of the course lectures into compact
versions. A good example is the lecture browsing system
of Toyohashi University of Technology [7], [8]. With the
summaries of the lecture recordings, novices can listen to the
summaries for obtaining the core concept of the courses and
selecting the right parts best fitting their needs before going
through the complete version, and the students can also review
the content of the courses very quickly.

In this paper, in order to help individual learners develop
their personalized learning paths from an on-line lecture plat-
form considering specific learning requirements, we present a
new approach of spoken knowledge organization for the course
lectures. We automatically extract key terms from the lectures
and take them as the fundamental elements of the semantics
for the spoken knowledge covered by the course content. We
automatically connect related key terms to construct the key
term graph as the backbone of the global semantic structure of
the course. We divide the audio/video signals into paragraphs,
sections and chapters as a multi-layer temporal structure of the
course, and develop summaries for each paragraph, section and
chapter as the local semantic structure. The global semantic
structure of key term graph is then interconnected with the
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nodes of the multi-layer temporal structure. All these are
jointly referred to as semantic structuring here in this paper.
The whole content of the course is then indexed by spoken
content retrieval technologies, so the learners can efficiently
navigate over the knowledge covered by the course with
globally and locally structured semantics. This offers multiple
ways to the learner to interact with the system and access the
curricula in their personalized way. A preliminary prototype
system was successfully developed at National Taiwan Uni-
versity (NTU), referred to as NTU Virtual Instructor. The first
version was completed in 2009 [9], while this paper presents
the latest version and the technologies used [10].

The rest of this paper is structured as follows. The proposed
approaches are overviewed in Section II. The course corpus
used in this research and the bilingual ASR techniques used
for transcribing the spoken content are briefly summarized
in Sections III and IV. The semantic analysis, key term
extraction, key term graph construction, speech summarization
and spoken content retrieval are then respectively presented
in detail in Sections V, VI, VII, VIII and IX. The prototype
system is described in Section X, and Section XI finally gives
the concluding remarks.

II. OVERVIEW OF THE PROPOSED APPROACH

Fig. 1: Overview of the proposed approach.

Fig. 2: Interconnection between the semantic structure and the
multi-layer temporal structure.

An overview of the proposed approach is shown in Fig. 1.
The course materials including slides (we assume slides for
the lectures are available) and multimedia (synchronized au-
dio/video) is at the upper left corner of Fig. 1. The audio

signals (and therefore video signals) are first divided into
utterance-level segments as in the top middle of the figure.

A. Automatic Speech Recognition (ASR)
An ASR system transcribes the utterance-level segments

into lattices or one-best transcriptions at the upper right
corner of Fig. 1. Correctly transcribing the spoken lectures
is challenging [11]–[13], not only because the lectures are
spontaneous, but because spoken lectures usually contain many
technical terms or OOV words, so the texts of the slides are
very helpful in enhancing the lexicon and language model used
in ASR [8], [14], [15].

On the other hand, many lecturers with non-English native
languages give the lectures primarily in their native languages
(referred to as the host language here, such as Mandarin),
but with some special terms produced in English (referred
to as guest language) embedded within the utterances of
the host language. This is because very often almost all
special terminologies for the courses are directly produced
by the lecturers in English without translating them into the
host languages. Although only a small portion of signals
in this corpus belongs to English, since most of them are
terminologies, they should not be ignored. Since the dataset
is very biased to Mandarin, special ASR techniques should
be designed to transcribe this kind of corpus. Because such
situation is very common for lectures offered in countries with
non-English native languages, special efforts have been made
and reported here to handle this problem. The ASR for such
bilingual lectures is summarized in Section IV.

B. Multi-layer Temporal Structure
At the upper middle of Fig. 1, the temporal structure of the

course is constructed in button-up three layers: paragraph, sec-
tion and chapter. The paragraphs are groups of neighbouring
utterance-level segments with similar lexical distributions in
their transcriptions clustered with dynamic programming [16].
A paragraph is usually a part of a slide. The audio corre-
sponding to a slide or a few slides with the same title is
regarded as a section, usually containing several paragraphs.
Since there exist software tools to synchronize the slides and
the video/audio during recording, sometimes the slides and the
video/audio recording are automatically synchronized, and the
sections can be obtained directly. Otherwise, the video/audio
recording can be aligned with the slides by hidden Markov
modeling in which each slide is a state based on its text and
the ASR transcriptions of a paragraph is an observation [16]. A
chapter corresponds to a set of consecutive slides on a common
subject, usually shown on the slides, which are defined by
the instructor or a textbook. The paragraphs, sections and
chapters are actually nodes on different layers in the multi-
layer temporal structure.

C. Semantic Analysis
This is at the lower middle of Fig. 1 to be further described

in Section V. Semantic analysis generates the latent topics
of the course as well as some useful semantic parameters
helpful to key term extraction, key term graph construction,
and summarization as presented below.
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D. Key Term Extraction

This is in the middle left of Fig. 1. Key terms are used here
as the fundamental elements of the course semantics. They
are automatically extracted based on not only the latent topic
information but also audio information such as prosody and
external resources such as Google and Wikipedia, as will be
presented in Section VI. The extracted key terms are displayed
in each node in the temporal structure (paragraph, section
and chapter), so the learners can realize the core concepts
discussed in a node by a glance at the key terms. The system
can also show all the nodes (paragraphs, sections and chapters)
containing a specific key term, so the learner can know how
the key term is related to other parts of the course or learn the
concept about the key term sequentially following the order it
was discussed in the lectures.

E. Key Term Graph Construction

This is at the lower left corner of Fig. 1. The key term
graph has all key terms extracted from the entire course as its
nodes, with only those with high enough relationships linked
by edges. This graph represents the backbone of the global
semantic structure of the course. Each key term is connected
to the paragraphs, sections and chapters (nodes in the temporal
structure) in which the keyterms is included. Therefore, the
semantic structure of key terms and the temporal structure are
inter-connected through the key terms as shown in Fig. 2. In
this way, the learner can easily find out related parts of the
course which can be studied jointly. The details for keyterm
graph construction will be reported in Section VII.

F. Speech Summarization

The summaries of the course content of the nodes in the
temporal structure are generated as in the middle bottom of
Fig. 1 (paragraphs, sections and chapters). Therefore, instead
of listening to the whole audio/video recording (e.g. several
hours for a chapter), a learner can skim the much shorter
summaries and then decide if he wishes to go through the
entire content in detail. This will be further discussed in
Section VIII. The semantic analysis, key term extraction, key
term graph construction and speech summarization mentioned
above in Section II-C to II-F are jointly referred to as semantic
structuring here in this paper.

G. Spoken Content Retrieval

The key term graph, summaries, semantic structure and
temporal structure jointly build the course content in a struc-
tured way. However, the learner needs to be able to retrieve
the spoken segments mentioning the concepts he wishes to
learn. The lattices generated by ASR from the audio of the
courses are indexed and retrieved for this purpose as on the
right part of Fig. 1. When the learner enters a text query, the
spoken content retrieval engine searches through the lattices
and returns the utterance-level segments regarded as containing
the query, together with the links to the paragraphs, sections or
chapters it belongs to, since it makes better sense to listen to
the complete paragraph, section or chapter for learning the

concepts with the query. The details will be introduced in
Section IX.

III. CORPUS DESCRIPTION

The corpus used in this research was the lectures for a
course of 45.2 hours long on Digital Speech Processing offered
in National Taiwan University in 2006. There was a total
of 17 chapters with 196 sections in the multi-layer temporal
structure in Subsection II-B. The course slides were available,
completely in English. The audio was recorded by the hand-
held microphone with 16KHz sampling rate. The utterances
in the lectures were produced spontaneously with many dis-
fluencies such as pauses, hesitations, repairs and repetitions
making the recognition more challenging. The intra-sentential
code-switching is an extra problem. The instructor produced
the whole lectures in the host language of Mandarin (the native
language), but many words or phrases (primarily terminologies
of the course) were naturally produced in English (the guest
language) and embedded in the Mandarin utterances. For
example, in the sentence, “除了 speech recognition 的技術
之外，我們還需要 indexing 跟 retrieval 的技術 (Except
for speech recognition technology, we also need technologies
for indexing and retrieval.)”, the phrase “speech recognition”
and the words “indexing” and “retrieval” were produced in
English, while other parts of the sentence were in Mandarin.

The whole corpus was divided into several partitions, and
their detailed information is in Table I. The acoustic models
used to transcribe the target lecture corpus were trained in
two scenarios, speaker-dependent and speaker-adaptive. In
speaker-dependent scenario, 9.1 hours speech in the corpus
(Training Set in Table I) was used to train speaker dependent
acoustic models; while in speaker-adaptive scenario, speaker
independent acoustic models were adapted by 0.5 hour speech
in the corpus (Adaptation Set in Table I). All parameters
in acoustic model training procedures were tuned on a 2.1
hours development set (Development Set in Table I). The audio
besides Training Set, Adaptation Set and Development Set in
the corpus is referred to as Testing Set, which has the length
of 33.5 hours. The recognition accuracies were evaluated on
2.2 hours of speech from Testing Set, and 40 sections (around
11.7 hours speech) in Testing Set were used for testing the
performance of summarization. The key term extraction, key
term graph construction and spoken content retrieval were all
tested based on the complete Testing Set. Columns (b) and
(c) in Table I are the numbers of Chinese characters1 and
English words respectively, and the numbers in the parentheses
in columns (b) and (c) are the numbers of unique tokens. In
Testing Set, there are respectively 93% and 71% of unique
Chinese characters and English words included in Training
Set. The ratios of English words to Chinese characters are
in column (d). Column (e) shows the percentage of code-
switched utterances in each set. From columns (d) and (e),
we found that although only a small portion of the signals
belongs to English words in the corpus, more than half of the
utterances has code-switched phenomenon.

1For Mandarin Chinese, the positions of word boundaries are not uniquely
defined, so the number of Chinese words in a sentence is not unique. Hence,
we report the numbers of Chinese characters instead of words here.
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(d) Ratio of (e) Percentage
(a) Length (b) Number of (c) Number of English Words to of Code-switched
(in hours) Chinese Characters English Words Chinese Characters Utterances

Training Set 9.1 124K (1.2K) 10K (0.9K) 8.0% 53%
Adaptation Set 0.5 6.7K (0.5K) 0.6K (0.2K) 8.7% 54%
Development Set 2.1 30K (0.8K) 2.7K (0.5K) 8.8% 55%
Testing Set 33.5 305K (0.7K) 27K (0.5K) 8.8% 57%

TABLE I: Detailed information for the partitions of the target corpus. The numbers in the parentheses in columns (b) and (c)
are the numbers of unique tokens.

We recruited graduate students of National Taiwan Univer-
sity who had taken the target course to annotate key terms, key
term graph and reference summaries. There were 61 subjects
annotating key terms. Since different subjects annotated quite
different sets of key terms with different numbers, we assigned
a score proportional to 1/Nj to a term if it was annotated
by a subject j who selected a total of Nj key terms. In this
way when a subject annotated less key terms, each of these
annotated key terms received a higher score. We then sorted
the terms by their total scores assigned by the 61 subjects, and
selected the top N̄ of them as the reference key terms, where
N̄ was the integer closest to the average of Nj for all subjects.
A total of 154 key terms2 (including 59 key phrases and 95
keywords) were generated as the reference key terms in this
way. Examples of such reference key terms included “language
model”, “speech recognition”, “name entity” (key phrases),
“LVCSR”, “n-gram” and “entropy” (keywords). Only 3 out
of 59 key phrases and 4 out of 95 keywords were in Chinese.
This shows that most terminologies carrying key information
for the course were in English. Given this reference key term
list, the 61 annotators achieved average precision, recall and
F-measure of 66.13%, 90.30% and 76.37%. Based on these
reference key terms, 12 subjects generated their key term
graphs by connecting the key terms considered as relevant.
To form one reference key term graph from the key term
graphs generated by different subjects, we assigned a score
proportional to 1/Nk to a pair of key terms if they were
connected on a key term graph with Nk edges produced by
subject k. Then the reference key term graph was generated by
connecting the N̄ ′ of key term pairs with the highest scores,
where N̄ ′ was the integer closest to the average of Nk for all
subjects. The average Graph Edit Distance (GED) [17] from
the reference key term graph to the key term graphs generated
by the annotators was 0.066. Reference summaries for the 40
sections in Testing Set were generated by 15 annotators. The
reference summaries were utterance-level segments selected
from the sections. Each sections has 3 short and 3 long
reference summaries generated by different annotators. For the
short version, the length (number of Chinese characters plus
English words in the manual transcriptions) of the summaries
does not exceed 10% of the whole sections; for the long
version, the length does not exceed 30%. The average kappa
score between the annotators were 75% and 48% respectively
for short and long summaries. This shows that the annota-

2The key terms never appearing in Testing Set were removed.

tors agreed with each other more when generating the short
summaries. For spoken content retrieval, 162 Chinese queries
were manually selected as testing queries, each consisting of
a single word.

IV. RECOGNIZING BILINGUAL CODE-SWITCHED
LECTURES

Transcribing bilingual corpus is difficult, because each
acoustic event may belong to either language, and may form
some words in either language when combined with adjacent
acoustic events. The lack of such bilingual corpora further
made model training difficult. Also, the English words were
usually pronounced with Mandarin accent, so different from
the standard English produced by native speakers. Here we
present the ways to handle the code-switched nature of the
course lectures considered.

A. Baseline

The simplest way to develop a bilingual recognition system
is to use a phoneme set including all phonemes of the two
languages for acoustic model construction, similarly a lexicon
of all words needed for the two languages, and a language
model based on the bilingual lexicon [18]. Such a system is
certainly capable of recognizing bilingual speech, and is taken
as the baseline here.

B. Bilingual Acoustic Modeling

The overall block diagram for improved bilingual acoustic
modeling is in Fig. 3. We begin with a set of full state-tied
triphone models based on the complete bilingual phoneme
set, including all Mandarin phonemes plus English phonemes,
trained with the complete bilingual training data. This is
referred to as “Acoustic Models (Full)” in the block (A) at the
upper left corner of Fig. 3, where blocks indicated by “HO”
and “GE” represent triphone models with central phonemes in
the host and guest languages respectively, although phonemes
of different languages can appear in the context. To address
the problem of lack of training data for the guest language, all
acoustic units are classified into weak units (with insufficient
training data, for example, guest language units) and strong
units (with sufficient training data, for example, host language
units) [19]. Here the acoustic unit refers to three possible
levels: either a triphone model, an HMM state, or a Gaussian
in an HMM state.
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Fig. 3: Proposed Approach for Bilingual Acoustic Modeling.

With the lists of weak and strong acoustic units, distance
calculation is performed between each weak unit (model, state,
Gaussian) and all strong units within the same phonetic class
uing symmetric KL divergence [18], [20]–[22]. This gives the
mapping table at the upper middle of Fig. 3, based on which
each weak unit (model, state, Gaussian) with too small training
data is merged with a strong unit on the same level with
minimum distance. In this way, the weak unit borrows the
training data from the strong unit.

On the Gaussian level, merging is performed by combin-
ing the means and covariance matrices. For merging on the
state level, every Gaussian in the state merges with another
Gaussian in the corresponding state with minimum symmetric
KL divergence. For merging on the model level, all states
belonging to the model are respectively merged with its
corresponding counterpart with state alignment estimated by
state transition probabilities [20]. Such unit merging process
produces a set of “shared units” as shown in the block (B) at
the upper right corner of Fig. 3 as “Acoustic Models (Merged
1)”, in which the “shared units” are those produced when
a weak unit is merged with the corresponding strong unit.
The parameters for all “shared units” in “Acoustic Models
(Merged 1)” are then re-estimated with maximum likelihood
estimation in speaker dependent case or a cascade of Maxi-
mum Likelihood Linear Regression (MLLR) and Maximum a
Posteriori (MAP) in speaker adaptation case. This gives the
set of “Acoustic Models (Merged 2)” at the right middle of
Fig. 3.

After the re-estimation, the merged units tend to be closer
to the strong units than the weak units because the former
dominate the data. Hence, we recover the merged units by
copying all parameters from the merged units to be the
respective units for both languages, and then applying an
additional run of parameter re-estimation. This is illustrated in
Fig. 3, where the recovery process gives the set of “Acoustic
Models (Recovered 1)” in block (D) at the lower right corner
which does not include the “shared units” any longer, and
the parameter re-estimation gives the final set of “Acoustic

Models (Recovered 2)” in block (E) at the lower left corner.
In the last re-estimation process, parameters of all units for
both languages can be estimated individually based on their
own data, but with initial parameters estimated by the shared
data when merged .

C. Frame-level Guest Language Detection

Here a frame-level guest language detector based on neural
net and specially selected features is further integrated in the
bilingual recognizer. For each speech frame ot at time t, the
guest language detector generates a posterior probability for
the frame belonging to the guest language, P (G|ot). In the
Viterbi search, if ot is identified as in the guest language
(P (G|ot) > 0.5), its likelihood for each HMM state qj for
guest language models, P (ot|qj), is boosted [23].

D. Experiments

For all the experiments in this subsection, the acoustic
models used were all triphone models with state-clustering by
decision trees. Two scenarios, speaker adaptation and speaker
dependent acoustic modeling, were considered as mentioned in
Section III. In both scenarios, the same lexicon and language
model were used. The bilingual lexicon used for speech
recognition included 2.1K English and 11.2K Chinese words.
The 2.1K English words were selected from the slides and
the reference transcriptions of Training and Adaptation Sets
in Table I, which covered all of the English words in Testing
Set. The 11.2K Chinese words included all commonly used
Chinese characters taken as mono-character Chinese words
and multi-character Chinese words discovered by PAT-Tree
based approaches from a large corpus [24]. We used the
Kneser-Ney trigram language model with a background model
adapted with the transcriptions in Training Set in Table I.
For the speaker adaptation scenario, the Mandarin speaker
independent models were trained with 31.8 hours of the
ASTMIC corpus of Mandarin read speech, and the English
models with 29.7 hours of the EATMIC corpus of English
read speech produced by Taiwanese speakers, and then adapted
by Adaptation Set in Table I. The speaker dependent acoustic
models were directly initialized and trained from Training Set
in Table I. For evaluation, when aligning recognition results
with the reference transcriptions, insertions, deletions and
substitutions were evaluated respectively for each language
and summed up for overall evaluation [23]. The basic unit
for alignment and calculation was character for Mandarin 3

and word for English.
Overall accuracy and individual performance for both lan-

guages are summarized in Table II. The English accuracy is
emphasized here because the English terms are usually the key
terms, in addition to the lack of English training data. The
results for both the standard speaker adaptation (SA, upper
half) with cascaded MLLR and MAP, and speaker dependent
(SD, lower half) models are reported in the table. In each

3Because in Mandarin Chinese different word sequences can correspond to
the same character sequence, when evaluating the recognition performance,
character accuracies are usually used instead of word accuracies.
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Acoustic Accuracy (%)
Models Approach Mandarin English Overall

Baseline 75.75 51.95 73.96
SA BAM 76.72 58.06 75.32∗

BAM+GLD 76.77 58.51 75.40∗†

Baseline 83.62 61.87 81.99
SD BAM 84.46 72.45 83.56∗

BAM+GLD 84.57 72.52 83.67∗†

TABLE II: Results for bilingual acoustic modeling (BAM) and
the integration with guest language detection (BAM+GLD)
for the scenario of speaker adaptation (SA) and speaker
dependent (SD) modeling. The superscripts ∗ and † on overall
accuracies respectively indicate significantly better than the
baseline system (Baseline) and the bilingual acoustic modeling
(BAM).

case, the results for the baseline system mentioned in Sub-
section IV-A without considering the bilingual characteristics
(Baseline), for the bilingual acoustic modeling approaches
described in Section IV-B with Gaussian unit merging and
recovery (BAM), and for BAM plus the guest language detec-
tion in Subsection IV-C (BAM+GLD) are all listed in different
rows. Pairwised t-test with significance level at 0.05 was also
performed over the overall results (considering Mandarin and
English jointly). The superscripts ∗ and † on overall accuracies
respectively indicate significantly better than the results in
rows labeled “Baseline” and “BAM”.

We can see from the table that the accuracies were improved
by the bilingual acoustic modeling approach in all cases (BAM
vs Baseline). With the unit merging and recovery, the English
accuracy part was dramatically improved, while Mandarin
accuracy was slightly improved as well. The integration with
the guest language detection also offered further improvements
(BAM+GLD vs BAM).

V. SEMANTIC ANALYSIS

We use a very popular approach for latent topic analysis:
probabilistic latent semantic analysis (PLSA) [25]. Given the
lecture corpus L here, PLSA obtained the probability of
observing a word w given latent topic Tk, P (w|Tk), and the
mixture weight of topic Tk given document d, P (Tk|d), where
{Tk, k = 1, 2, ...,K}. For the multi-layer temporal structure
mentioned in Section II-B, the documents d considered here
can be either the utterance-level segments, the paragraphs,
sections or chapters.

Several different measures can be obtained based on the
PLSA model [26]. First of all, we can have a topic distribution
given a word w,

P (Tk | w) =
P (w | Tk)P (Tk)

P (w)
, (1)

where P (w) can be obtained by estimating the probability of
w in the corpus L, and P (Tk) can be estimated by averaging
P (Tk | d) over all the documents d in L.

Given P (Tk | w) in (1), latent topic entropy E(w) for a
word w [26] is defined:

E(w) = −
K∑
k=1

P (Tk | w) logP (Tk | w). (2)

Clearly, a lower E(w) implies that the distribution of P (Tk |
w) is more focused on a smaller number of latent topics.

The latent topic significance of a word w with respect to a
specific topic Tk [26] is defined as below:

Sw(Tk) =

∑
d∈L f(w, d)P (Tk | d)∑

d∈L f(w, d)[1− P (Tk | d)]
. (3)

In the numerator of (3), the count of the given word w in
each document d, f(w, d), is weighted by the likelihood that
the given topic Tk is addressed by the document d, P (Tk |
d), and then summed over all documents d in the corpus L.
The denominator is very similar except for latent topics other
than Tk, or P (Tk | d) in the numerator of (3) is replaced by
[1− P (Tk | d)] in the denominator.

VI. KEYTERM EXTRACTION

We assume the key terms of a course are the fundamental
elements of the semantics of the knowledge covered, so
automatic extraction of key terms is very important. In key
term extraction, supervised approaches can provide better per-
formance than unsupervised approaches [27]. However, in real
world application, a set of key terms as training examples for
the supervised approaches is usually not available. Therefore,
only unsupervised key term extraction are considered here,
which is still a very challenging task today [28], [29].

Here the key terms considered include two types: key
phrases (e.g. “hidden Markov model” and “information the-
ory”) and keywords (e.g. “perplexity”). TF-IDF is a good
measure for identifying key phrases [30], [31], but it suffers
from identifying some incomplete phrases (usually parts of
key phrases) as key phrases. For example, TF-IDF may regard
“hidden Markov” (an incomplete phrase) as a key phrase. To
address this problem, in Section VI-A, right/left branching
entropy is used to rule out the incomplete phrases. On the
other hand, because a word may have different meanings in
different context, but a phrase seldom has several meanings,
identifying keywords are harder than key phrases, so more
sophisticated approach is needed for identifying keywords.
Therefore, in Section VI-B, we present an unsupervised two-
stage approach for automatically selecting keywords, which
realizes keyword extraction by considering various information
from the Internet, the transcriptions and audio signals of the
lectures including prosodic features [32].

A. Key Phrase Identification

The purpose here is to identify patterns of two or more
words appearing together in the transcriptions of the lectures
much more frequently than other sequences of words, so we
can take them as candidates of key phrases such as “hidden
Markov model” or “information theory”. The approach pro-
posed here is to use right/left branching entropy. The right
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branching entropy of a pattern u (two or more words), Hr(u),
is defined as

Hr(u) = −
∑
a∈Au

p(a) log p(a), (4)

where u is the pattern of interest (e.g., “hidden Markov”), Au
is the set of all “child” patterns of u, found in the lecture
transcriptions, or all patterns which are formed by appending
a word after u (e.g., “hidden Markov model”, “hidden Markov
chain” for “hidden Markov”), a is an element of Au, and

p(a) =
f(a)

f(u)
, (5)

where f(u) and f(a) are the frequency counts of u and a in
the transcriptions respectively. Thus p(a) is the probability of
having a given u, and Hr(u) is therefore the right branching
entropy of u.

When a pattern “hidden Markov model” appears very fre-
quently, most patterns of “hidden Markov” are all followed
by the word “model” (so “hidden Markov” has a low Hr(u)),
while the patterns of “hidden Markov model” are followed by
many different words such as “is”, “can”, “to”, “with”... (so
“hidden Markov model” has a high Hr(u)). In this way we
can use the right branching entropy Hr(u) to identify the right
boundary of a key phrase candidate (to the right of “model”
rather than the right of “Markov” in the above example) by
setting thresholds for Hr(u).

Similarly we can define a left branching entropy Hl(u) for
each pattern u to be used similarly to identify the left boundary
of a key phrase candidate (e.g. the left boundary of the phrase
“hidden Markov model” is to the left of “hidden” rather than
the left of “Markov”, because “hidden” is preceded by many
different words, while “Markov” is almost always preceded
by “hidden”).

In the test, we compute the average Hr(u) and Hl(u) for
all possible patterns u, and then take those patterns u whose
Hr(u) and Hl(u) are both higher than the average values to
be the key phrase candidates. Then the key phrase candidates
whose TF-IDF are higher than a threshold are selected as key
phrases. The threshold can be determined by a development
set.

B. Keyword Selection

All single words in the lecture transcriptions which is
labeled as a “Noun” by a POS tagger and not in the stop
word list are taken as candidates of keywords. With the
framework shown in Fig. 4, in the first stage, all keyword
candidates are ranked according to their topic coherence and
term significance measures. In the second stage, based on the
ranking in the first stage, pseudo-positive/-negative examples
for keywords are selected to train an SVM classifier which
decides the final keyword list.

1) First Stage – Candidate Ranking: The first reference
for keyword ranking is the topic coherence. This is based on
the observation that words having more coherent context are
more likely to be keywords. For example, in the course related
to speech processing, the keyword “perplexity” is usually
surrounded by context regarding “language model”, “entropy”,

etc; on the other hand, the word “equation” is not a keyword,
it is usually surrounded by widely varying context. Hence, we
evaluate the topic coherence of the context of each candidate
keyword t.

The topic coherence of each candidate keyword t is evalu-
ated as below. Given a database D (first consider the lecture
transcriptions L as D here, although D will be generalized
to other databases latter on), we train a PLSA model from D
with a topic distribution {P (Tk|d), k = 1, 2, ...,K}. For each
keyword candidate t, we then select the M documents out of
D with the highest frequency counts of t as the contexts of
t, C(t). The topic coherence for the keyword candidate t is
then defined as the average pairwise cosine similarity for the
documents d in C(t) as below:

hD(t) =

∑
d,d′∈C(t),d 6=d′ T (d, d′)

M(M − 1)
, (6)

where the subscript D in hD(t) indicates that the topic
coherence is based on the database D, M is the size of the
context C(t), and T (d, d′) is the cosine similarity between the
PLSA topic distributions of d and d′:

T (d, d′) =

∑K
k=1 P (Tk | d)P (Tk | d′)√∑K

k=1 P (Tk | d)2
√∑K

k=1 P (Tk | d′)2
. (7)

We consider those keyword candidates t with higher hD(t),
are more likely to be keywords.

Latent topic entropy (LTE) described in (2) in Section V
is certainly an important parameter for keyword ranking too.
The latent topic entropy of a keyword candidate t, ED(t),
evaluated based on the PLSA model trained from the database
D is therefore computed. The subscript D of ED(t) indicates
it is based on the database D. A lower ED(t) implies that t is
more focused on less latent topics, or carries more topical in-
formation or salient semantics. With the term frequency jointly
considered, the significance score of a keyword candidate t is
defined as

sD(t) =
γf(t,D)

ED(t)
, (8)

where f(t,D) is the frequency count of t in D, and γ is a
scaling factor.

The lecture transcriptions L can serve as the database D
here, with each paragraph regarded as a document d. However,
the information in the course lectures may be limited. This can
be generalized using Google search engine and the Wikipedia.
We use each keyword candidate t as the query to request the
Google search engine, and the top M web pages returned by
Google are regarded as C(t). In this way, the database D is
approximately all the web pages on the Internet. Similarly, we
also take all the Wikipedia pages as D by the search engine
of Wikipedia.

Based on a database D, each candidate keyword t is given
a score KD(t) by putting together (6) and (8),

KD(t) = hD(t) · sD(t). (9)

Finally, the candidate keywords are ranked according to the
weighted sum of KD(t) based on different databases D.
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Fig. 4: The framework of two-stage keyword extraction.

2) Second Stage – SVM Classifier: From the candidate
list ranked by the first stage, we simply assume the top M ′

candidates to be pseudo-positive examples and the bottom
M ′ candidates to be pseudo-negative examples, and use these
examples to train an SVM classifier. The features for SVM
classifier training include prosodic features4, lexical features
(TF-IDF, POS tags, etc.), and semantic features (from PLSA,
etc.) [32]. Finally, we use this SVM classifier to classify all
the candidate keywords (including the selected examples) to
decide whether they are keywords.

C. Experiments

Both the transcriptions generated by the baseline speaker
adaptive models (row Baseline in the upper part of Table II)
and manual transcriptions were used for key term extraction
here. We used 1/10 of the lecture transcriptions and the key
terms included out of the 154 as the development set to tune
the parameters including M (size of C(t) in (6)), γ in (8),
and M ′ (number of SVM training examples), the weights for
the sum of KD(t) in (9) for different databases D, and the
parameter for SVM training. The number of PLSA topics was
25.

Approach Precision Recall F-measure

A
SR English Phrases 29.58 35.59 32.31

Branching Entropy 58.54 81.36 68.09

M
an

ua
l English Phrases 41.27 44.07 42.62

Branching Entropy 59.26 81.36 68.57

TABLE III: Performance of key phrase extraction using ASR
or manual transcriptions (%).

The results (Precision, Recall and F1 measure) for key
phrase extraction based on ASR or manual transcriptions are
listed in Table III. In row labeled English Phrases, all the
English noun phrases appearing in the transcriptions were
taken as key phrase candidates, and the candidates whose TF-
IDF higher than a threshold were selected as key phrase. The
rows Branching Entropy are the results using the approach
in Section VI-A. We found that the results in rows Branching
Entropy was better than English Phrases in all cases. This

4pitch related, energy related, and duration related, since keywords are very
often produced with wider pitch range, higher energy, and lower speed

shows that branching entropy could select better candidates
than considering all the English noun phrases as candidates.
We also find that results for ASR transcriptions were rather

close to the manual case, probably because the phrase patterns
had relatively high recognition accuracy. With ASR transcrip-
tions, using branching entropies to find key phrase candidates
yielded an F-measure of 68.09% in Table III, which implies
the usefulness of this approach 5.

Approach Precision Recall F-measure
A

SR

English Words 5.98 94.92 11.25
TF-IDF 37.78 16.59 23.05

K-means Exemplar 40.28 30.53 34.73
Proposed 45.45 31.91 37.50

M
an

ua
l English Words 5.89 95.74 11.10

TF-IDF 41.67 31.91 36.14
K-means Exemplar 49.32 37.89 42.86

Proposed 50.81 67.02 57.80

TABLE IV: Performance of keyword extraction using ASR or
manual transcriptions (%).

The results (Precision, Recall and F1 measure) for keyword
extraction using ASR or manual transcriptions are listed in
Table IV compared to three baselines: English Words (all
the noun in English appearing in the transcriptions were
considered as keywords), TF-IDF (selecting N̄ candidate key-
words with the highest TF-IDF scores) and K-means exemplar
(using K-means algorithm6 to cluster candidate keywords
based on latent topic distributions, and selecting exemplars
of the clusters as keywords) [33], [34]. Considering all the
English words as keywords obtain high recall rate but low
precision rate. This is because most keywords were in English,
but most of English words were not keywords. We find that
the proposed approach outperformed both baselines in terms of
all evaluation measures (Precision, Recall and F1 measure) for
both ASR and manual transcriptions. F-measures of 37.50%
and 57.80% respectively for ASR and manual transcriptions
were obtained. Note that the results for key phrases in Table III
are significantly better than keywords in Table IV. This implies

5It is possible to apply the two-stage approach in Section VI-B for key
phrase extraction, but this approach did not improve key phrase extraction in
the experiments.

6setting K = N̄
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it is much more difficult to identify a simple word as a keyword
than for a pattern as a key phrase.

VII. KEYTERM GRAPH

Here we try to connect the related key terms into a key
term graph on which each key term is a node, so the key term
graph forms the backbone of the global semantic structure of
the course lectures.

A. Approaches
We define a relationship function R(ti, tj) for every two key

terms ti and tj to describe the degree of relationship between
them. The key term pairs ti and tj with R(ti, tj) exceeding a
threshold are considered as related, and linked on the key term
graph. R(ti, tj) can be one of the five functions Ra(ti, tj) to
Re(ti, tj) proposed below or their linear combinations.
(a) Co-occurrence Rate based on the lecture transcriptions L:

Ra(ti, tj) =
n(ti, tj)

n(ti) + n(tj)− n(ti, tj)
, (10)

where n(ti), n(tj) and n(ti, tj) are the number of para-
graphs containing ti, tj and both ti and tj .

(b) Word-level Context Coherence:

Rb(ti, tj) =
2|Cw(ti) ∩ Cw(tj)|
|Cw(ti)|+ |Cw(tj)|

, (11)

where Cw(ti) is the word-level context of ti, or the word
set containing all words (excluding stop words) in the
transcription paragraphs having the term ti, and |Cw(ti)|
is the number of distinct words in Cw(ti). Therefore,
Rb(ti, tj) is the dice co-efficient of the sets Cw(ti) and
Cw(tj).

(c) Latent Topic Similarity based on the topic distribution
given a term ti, or {P (Tk|ti), k = 1, ...,K} as in (1):

Rc(ti, tj) =

∑K
k=1 P (Tk|ti)P (Tk|tj)√∑K

k=1 P (Tk|ti)2
√∑K

k=1 P (Tk|tj)2
, (12)

which is the cosine similarity between the topic distribu-
tion vectors very similar to (7).

(d) Similarity in Latent Topic Significance:

Rd(ti, tj) =

∑K
k=1 Sti(Tk)Stj (Tk)√∑K

k=1 Sti(Tk)2
√∑K

k=1 Stj (Tk)2
, (13)

which is parallel with (12), except that the topic distribu-
tions P (Tk|ti) in (1) used in (12) are replaced by the latent
topic significances Sti(Tk) in (3). In (13), those terms
highly significant to the same topics are highly related.

(e) Inverse Normalized Google Distance (NGD):

Re(ti, tj) = −NGD(ti, tj), (14)

where the normalized Google Distance, NGD(ti, tj),
between two terms ti and tj is estimated inversely propor-
tional to the possibility that ti and tj appear on the same
web page obtained from Google search engine using ti, tj ,
as well as “ti and tj” as the queries [35]. The concepts of
Ra(ti, tj) and Re(ti, tj) are very similar, but Ra(ti, tj)
is based on the paragraphs of the course transcriptions,
while Re(ti, tj) on the web pages.

B. Experiments

Here we constructed the key term graph based on the best
results of automatically extracted key terms in Section VI with
57.80% of F1 measure in Table IV. We conduct 3-fold cross
validation. The extracted key terms were first separated into
3 sets, roughly corresponding to the first, middle and last
parts of the course. In each trial, 2 sets of key terms and
their human-generated graphs were used as the development
set to determine the respective thresholds for the relationship
functions to be used for generating the key term graph for the
remaining test set. This process was repeated 3 times. We used
Graph Edit Distance (GED) [17] from the machine-generated
graph to the human-generated graph as the evaluation measure.
Smaller GED indicates better performance.

Table V shows the performance of the key term graphs
evaluated by GED. The results based on the five relation-
ship functions, Ra(ti, tj) in (10) to Re(ti, tj) in (14), are
respectively in rows (a) to (e). We find that the relationship
functions based on semantic analysis, that is, latent topic
similarity Rc(ti, tj) in row (c) and similarity in latent topic
significance Rd(ti, tj) in row (d), yielded better results than
other functions in rows (a), (b) and (e). This shows that
the semantic analysis was really useful for keyterm graph
construction. The relatively larger values of GED for rows (a)
and (e) indicates that the related key terms did not necessarily
co-occur in either the same course paragraphs or the same
web pages, and the results in row (b) reveals that related key
terms did not necessarily have coherent contexts. In addition,
in row (f), we further weighted summed the scores in rows
(c) and (d) with weights determined by the development set.
We found that the integration of the two functions based on
latent topics in rows (c) and (d) offered further improvements
over the individuals (rows (f) vs (c), (d)). However, further
integrating the results in (f) with (a), (b) and (e) did not provide
any further improvements, probably because row (f) was much
better than rows (a), (b) and (e).

In Fig 5, parts of the key term graphs generated by different
relationship functions are displayed 7. Fig 5 (a) is part of the
reference key term graph. It is obvious that there are two
groups of key terms. One group of key terms is related to
speech recognition (at right hand side of Fig 5 (a)), and another
group is more related to semantic analysis (at left hand side).
Fig 5 (b) is part of the key term graph generated based on co-
occurrence rate (Ra(ti, tj) in (10)), or part of the result in row
(a) in Table V. Compared with the reference key term graph, a
large amount of related key terms could not be connected by
co-occurrence rate. This is because some of the related key
terms such as “MFCC” and “Hidden Markov Model” were
introduced in different chapters, and thus had very low co-
occurrence rate. The key term graphs generated by word-level
context coherence (Rb(ti, tj) in (11)) had the same issue as
co-occurrence rate. Fig 5 (c) is part of the key term graph
generated by integrating Latent Topic Similarity (Rc(ti, tj) in
(12)) and Similarity in Latent Topic Significance (Rd(ti, tj)
in (13)), or part of the result in row (f) in Table V. The graph

7We can not display the complete key term graph because there are too
many key terms.
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Functions for Relation Evaluation GED
(a) Ra(ti, tj): Co-occurrence Rate 0.182
(b) Rb(ti, tj): Word-level Context Coherence 0.212
(c) Rc(ti, tj): Latent Topic Similarity 0.136
(d) Rd(ti, tj): Similarity in Latent Topic Significance 0.152
(e) Re(ti, tj): Inverse Normalized Google Distance 0.212
(f) (c) + (d) 0.076

TABLE V: Performance of keyterm graph construction based on different relationship functions in terms of graph edit
distance (GED).

in Fig 5 (c) is more similar to the reference graph in Fig 5 (a)
than Fig 5 (b), which shows that semantic information can
identify the related key terms with low co-occurrence rate.

VIII. SPEECH SUMMARIZATION

While the key terms represent the fundamental semantic ele-
ments in the knowledge covered by the course and the key term
graph represents the backbone of the global semantic structure,
summaries can be obtained for the model in the multi-layer
temporal structure (paragraphs, sections and chapters), which
are significantly reduced temporal spoken knowledge based
on the local semantic structure of the paragraphs, sections and
chapters. They offer efficient ways in browsing the lectures.
Therefore, here extractive summarization was performed on
all paragraphs, sections and chapters. That is, given a set of
utterance-level segments X (a paragraph, a section or a chap-
ter), some segments x ∈ X are selected to form the summary
Xsum of X . Supervised summarization approaches [36], [37]
have been successfully developed and used in lecture browsing
systems based on sets of audio data and their reference
summaries [7]. However, because the course content is usually
on some specialized area, it is not easy to collect enough
audio data in related domain, not to mention hiring experts
understanding the content to produce reference summaries.
Therefore, we assume unsupervised approaches are preferred
for summarizing course lectures. Here a two-layer graph-based
approach is used to summarize the segment sets by jointly
considering the audio content and the corresponding slides.
Similar two-layer graph-based approach has been proposed
on multi-party meeting summarization [38], but it is used in a
completely different way here. The original graph-based sum-
marization approach [39] is described in Subsection VIII-A,
and in Subsection VIII-B we introduce the two-layer approach.

A. Original Graph-based Approach

The basic idea of graph-based approach is that the segments
similar to more segments in X is important, and the segments
similar to the important segments are tend to be important
as well. This can be formulated as a problem on a graph, in
which all the segments x in X are nodes on the graph. The
weights T (x, x′) of the directional edges from nodes x to x′

(x→ x′) are the Okapi similarity between the transcriptions8

8The function words are removed.

of them [40]. Note that T (x, x′) = T (x′, x), so there are two
directional links with equal weights between each node pair
x → x′ and x′ → x, and only the node pairs with non-zero
Okapi similarity are connected.

An importance score M(x) is then assigned to each segment
x based on the graph structure with the following equation:

M(x) = (1−λS)M0(x) +λS
∑

x′∈IX (x)

M(x′)T ′(x′, x), (15)

where IX (x) is the set of nodes in X connected to node
x via incoming edges, and T ′(x′, x) is the weight of the
directional edge (x′ → x) normalized by the total weights
over the outgoing edges of x′:

T ′(x′, x) =
T (x′, x)∑

x′′∈OX (x′) T (x′, x′′)
, (16)

where OX (x′) are the set of nodes in X connected by
outgoing edges of x′. Here (16) implies the score of node
x′ is distributed to all nodes x′′ via the outgoing edges, so
normalized by all outgoing edges; while the second term
on the right of (15) implies the scores of all such nodes
x′ with an incoming edge linked to the node x flow to x.
M0(x) in (15) are biases for segments x, which can be either
uniform or obtained from some prior knowledge. λS is an
interpolation weight between the two terms on the right of
(15). Based on (15), the more x′ is similar to x (or the
higher the edge weight T (x′, x) is), the larger M(x) is. We
then used Maximum Marginal Relevance (MMR) to generate
the summaries [41]. This approach selects in each iteration
one utterance-level segment x from the segment set X to be
added to the summary Xsum at the current iteration, which is
the segment with the highest importance score M(x), while
adding minimum redundancy to the current summary Xsum.

B. Two-layer Graph-based Approach

The slides of lecture courses are usually available. Com-
pared with the content of the audio, the slides of lecture
courses are succinct and well-structured, so they are very good
resources to enhance the summarization of the lecture courses.
Here the two-layer graph-based approach is used to jointly
consider the utterance-level segments with their corresponding
slides. As shown in Fig. 6, the graph has two layers of nodes.
One layer of nodes is segments x in the segment set X ,
and the other one is sentences s in the corresponding slides
S. The segments or sentences with Okapi similarity larger
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(a) Part of reference key term graph (b) Part of key term graph based on co-occurrence rate (part of the result
in row (a) in Table V).

(c) Part of key term graph based on the integration of latent topic similarity
and similarity in latent topic significance (part of the result in row (f) in
Table V)

Fig. 5: Part of the reference key term graph and the key term graphs generated by different relationship functions.

Fig. 6: Two-layer Graph-based Approach.

than zero are connected to each other. The basic idea of
the two-layer approach is that the segments connect to the

important sentences on the graph are important, and on the
other hand, the sentences connecting to important segments are
important as well. With the two-layer graph-based approach,
the importance estimations of segments and sentences in slides
are jointly considered and can reinforce each other.

Based on the two-layer graph, segments x and sentences
s are assigned a set of new importance scores M ′(x) and
M ′(s). The importance scores M ′(x) for segments x satisfy
the following equation:

M ′(x) = (1− λS)M0(x) + λS
∑

x′∈IX (x)

M ′′(x′)T ′(x′, x),

(17)
which is parallel to (15), except that in the second term at
the right hand side, another scores M ′′(x′) are used rather
than M ′(x′). The score M ′′(x′) of segment x′ depends on
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the importance scores M ′(s) of the sentences s in the slides:

M ′′(x′) =
∑

s∈IS(x′)

M ′(s)T ′(s, x′), (18)

where IS(x′) is the set of sentences in slides S connected to
segment x′ via incoming edges. T ′(s, x′) is the weight of the
directional edge (s→ x′) normalized by the total weights over
the outgoing edges of s connecting to nodes belonging to X :

T ′(s, x′) =
T (s, x′)∑

x′′∈OX (s) T (s, x′′)
, (19)

where T (s, x′) is the Okapi similarity between the sentence s
and the transcription of x′, and OX (s) are the set of segments
in X connected by outgoing edges of sentence s. Based on
(17) and (18), a segment can have large M ′(x) if connected
by other segments with large M ′′(x′), and a segment x′ have
large M ′′(x′) when connected by important sentences s with
large M ′(s). The importance of sentences M ′(s) is defined in
a similar way as M ′(x) in (17).

M ′(s) = (1−λS)M0(s)+λS
∑

s′∈IS(s)

M ′′(s′)T ′(s′, s), (20)

M ′′(s′) =
∑

x∈IX (s′)

M ′(x)T ′(x, s′) (21)

Equations (20) and (21) are parallel with (17) and (18), except
that the roles of segments and sentences are reversed. By
searching for a set of M ′(x) and M ′(s) satisfying (17), (18),
(20) and (21), the importance of the utterance-level segments
and sentences in the slides are jointly estimated. MMR is
finally used to select the segments to form the summaries
based on the importance scores M ′(x) in (17).

C. Experiments

Fig. 7: ROUGE-1, 2, 3 and ROUGE-L F-measures for original
and two-layer graph-based approach with different types of
summarization (Short and Long).

To evaluate the performance of the automatically generated
summaries, the ROUGE-N (N = 1, 2, 3) and ROUGE-L F-
measures from the package ROUGE [42] were used. The
results for the 40 sections with references in Section III
were reported here. λS in (15), (17) and (20) was set to be
0.85. In all the experiments, we simply set the prior M0(x)
in (15) and (17) to be 1/|X |, where |X | is the number of
segments in the segment set X to be summarized, while
M0(s) in (20) was set to be 1/|S|, where 1/|S| is the
number of sentences in the corresponding slides. We used the
baseline speaker adaptive models (row Baseline in the upper
part of Table II) to transcribe the audio of the 40 sections.
Fig. 7 (a) to (d) respectively shows the results of ROUGE-
1, 2, 3 and ROUGE-L F-measures for the 40 sections with
references. In each case the two groups of bars are for the
results of short (10% summarization ratio) and long summaries
(30% summarization ratio), and in each group the blue bar
is for original graph-based approach in Subsection VIII-A,
while the green bar for two-layer graph-based approach in
Subsection VIII-B. In all cases in Fig. 7, we see the two-
layer graph-based approach improved the performance over
the original approach regardless of the evaluation measures
and summarization types.

IX. SPOKEN CONTENT RETRIEVAL

Fig. 8: Framework for Pseudo-relevance Feedback (PRF).

Given the semantic structure, key term graph and sum-
maries, efficient and accurate retrieval of the spoken content
in the lectures is finally the key element enabling the users to
navigate across the course content for personalized learning.
Here we focus on a specific task, in which the query is a term
in text, and the system in to return utterance-level segments
including the query term. The approaches presented below
can be equally applied on retrieving paragraphs, sections and
chapters, but here we only mention those for the utterance-
level segments for simplicity. The discussions below may also
be generalized to other spoken content retrieval tasks such as
spoken queries or semantic retrieval, but they are out of the
scope here.

Most conventional spoken content retrieval techniques were
applied on top of ASR output such as lattices with performance
inevitably depending on ASR accuracy. Because it is difficult
to obtain acoustic and language models robust enough for
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recognizing spontaneous course lectures on specific subject
domains, here we present different techniques for retrieving
course lectures which are less constrained by recognition
accuracy with the framework shown in Fig. 8 [43], [44].
When a query term is entered, the system generates first-
pass retrieved results from the lattices. Two pseudo-relevance
feedback (PRF) approaches are then applied, the one based
on SVM in the middle of the figure, and the one based on
graphs in the lower part of the figure. The results of the two
approaches are then integrated.

A. First-pass Retrieval

Each utterance-level segment x in the course lecture archive
is transcribed into a lattice off-line. When the query Q is
entered, all segments x in the archive are ranked based on
the widely used relevance score S(Q, x), or the expected
occurrence count of query Q obtained based on the acoustic
and language model scores in the lattice of x [45]–[49]. This
generates the first-pass retrieval results as in the middle left
of Fig. 8. This list is not shown to the user. For simplicity,
we assume the query Q is a single word, and the arcs in the
lattices are word hypotheses. Extension to longer queries and
subword lattices is trivial [44].

B. Pseudo-relevance Feedback based on SVM

Fig. 9: Feature vector representations. Left half: the definition
of a “hypothesized region” in the lattice of segment x for the
query term Q. Right half: the feature vector f(x).

As shown in the middle of Fig. 8, we select some segments
in the first-pass retrieval results, assume they are pseudo-
relevant and -irrelevant, and take them as positive and negative
examples in training a support vector machine (SVM), with
which the segments in the first-pass results are re-ranked [43].

To train an SVM model, each segment x should be rep-
resented by a feature vector f(x). We first define the “hy-
pothesized region” for a spoken segment x and a query Q
to be the part of the acoustic vector (e.g., MFCC) sequence
corresponding to a word arc in the lattice whose hypothesis
is exactly Q with the highest posterior probability, as shown
in the left half of Fig. 9. In the right half of Fig. 9, this
hypothesized region is divided into a sequence of divisions
based on the HMM state boundaries obtained during the
lattice construction. Each division is then represented by the
average of the acoustic vectors in it. All these averaged vectors
in a hypothesized region are then concatenated to form the
feature f(x). For l-state phoneme HMMs and a query term Q
including m phonemes, the dimensionality of such a feature

vector f(x) is m× l times the dimensionality of the acoustic
vectors. The feature vector f(x) thus capsules the acoustic
characteristics of the hypothesized region of x.

Then as shown in the middle of Fig. 8, some segments in
the first-pass retrieved list are respectively taken as positive
and negative examples to train an SVM model. Each segment
x in the list is first compared with the groups of top- and
bottom-ranked segments and obtains a confidence measure
for containing the query Q (those similar to many top seg-
ments and dissimilar to more bottom segments have higher
confidence measures). In this way, we select positive and
negative examples based on these confidence measures with
such selected example having an estimated confidence [43].

The SVM training is slightly modified to consider the above
confidence measure, so examples with higher confidence are
weighted higher [43]. This SVM then classifies all segments in
the first-pass results by giving each segment x a value which
tends to be larger when x is relevant and vice versa. This value
is then linearly normalized into a real number R(x) between
0 and 1. The new relevance score S1(Q, x) for re-ranking
the segment x is then obtained by integrating the original
relevance score S(Q, x) in Subsection IX-A with R(x),

S1(Q, x) = S(Q, x)1−δRR(x)δR , (22)

where δR is a weight parameter.

C. Pseudo-relevance Feedback based on Graphs

The basic idea here is very similar to segment scoring
using graphs for summairzation in Section VIII-A. If the
hypothesized region of a segment is very similar to many
other segments judged to include the query Q in the first-
pass retrieval, it may have a higher probability to include
the query Q. Therefore, we construct a graph with each
segment x in the first pass results being a node. The similarity
TR(x, x′) between two segments x and x′ (the weight for edge
x→ x′) can be estimated based on the DTW distance between
the hypothesized regions (defined on the left of Fig. 9) of
them plus a transformation (larger distance implying smaller
similarity). Then the graph is pruned such that each node
(segment) x is connected to only KR segments x′ with the
highest incoming edge weight TR(x, x′).

The rest is similar to Section VIII-A. Each segment x is
assigned a new score SG(x),

SG(x) = (1− λR)S(Q, x) + λR
∑

x′∈IN(x)

SG(x′)T ′R(x′, x),

(23)
where T ′R(x′, x) is the edge weight TR(x′, x) normalized over
the outgoing edges of segment x′:

T ′R(x′, x) =
TR(x′, x)∑

x′′∈OUT (x′) TR(x′, x′′)
. (24)

Equations (23) and (24) are exactly in parallel with (15) and
(16). λR in (23) is an interpolation weight. Here (23) implies
SG(x) depends on two factors, the original scores S(Q, x) in
the first term and the scores propagated from similar segments
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in the second term. SG(x) is then integrated with the original
relevance score S(Q, x) for re-ranking as

S2(Q, x) = S(Q, x)1−δ
′
RSG(x)δ

′
R , (25)

where δ′R is a weight parameter.

D. Integration

The approaches in the Subsection IX-B and IX-C can be
integrated as

S3(Q, x) = S1(Q, x)1−δ
′′
RS2(Q, x)δ

′′
R , (26)

where δ′′R is another weight parameter. The final results shown
to the users are ranked according to S3(Q, x).

E. Experiments

Mean average precision (MAP) was used as the performance
measure. Pair-wise t-test with significance level at 0.05 was
used for significance test for improvements. δR, δ′R and δ′′R in
(22), (25) and (26) were respectively set to be 0.9, 0.9 and
0.5, and all the remaining parameters were determined by 4-
fold cross validation. The testing queries were separated into 4
parts. In each trial, one part was used as the development query
set for parameter tuning while the other three parts tested.

SA SD
(1)first pass 0.7962 0.8520

(2)SVM 0.8153∗ 0.8648
(3)graph 0.8357∗† 0.8719∗

(4)SVM+graph 0.8439∗†‡ 0.8783∗†‡

TABLE VI: Experimental Results yielded by pseudo-relevance
feedback (PRF) in terms of Mean Average Precision (MAP).
The superscripts ∗, † and ‡ respectively indicate significantly
better than the first-pass results, SVM and the graph-based
approach.

The experimental results are shown in Table VI. We used
the baseline speaker adaptive models (row Baseline in the
upper part of Table II) and baseline speaker dependent models
(row Baseline in the lower part of Table II) to transcribe all
utterance-level segments in Testing set in Table I into two
sets of lattices with beam width 50. The results based on the
two sets of lattices are respectively in columns SA (speaker
adaptive) and SD (speaker dependent) in Table VI. In Table VI,
row (1) is the MAP scores of the first-pass retrieval results
(Subsection IX-A), while those using SVM (Subsection IX-B),
graphs (Subsection IX-C) and both (Subsection IX-D) are
respectively in rows (2), (3) and (4). The superscripts ∗, †

and ‡ indicate respectively significantly better than the first-
pass results, SVM and the graphs. We find that both SVM and
graphs improved the performance (rows (2),(3) vs (1)). Each of
them showed strengths over the other. SVM took advantages
of the discriminative capabilities of SVM, whereas the graphs
considered the global acoustic similarities among all segments
rather than the individuals. Hence, the integration in row (4)
yielded further improvement over the individuals.

X. PROTOTYPE SYSTEM

A preliminary prototype system has been successfully de-
veloped at National Taiwan University (NTU), referred to as
NTU Virtual Instructor [10]. The first version of the system
was completed in 2009 [9], while this paper presents the
technologies used in its latest version. It is based on a course of
“Digital Speech Processing” offered in NTU in 2006. Fig. 10
are example screenshots for learner/system interactions.

In Fig. 10 (a), the learner typed the query “triphone” in
the blank at the upper right corner. As shown at the upper
left corner, the spoken content retrieval system found 163
utterance-level segments containing the query term “triphone”,
ranked by confidences (only top three shown here). The first
segment was shown to belong to the section with slide title “5-
7 Classification and Regression Tree (CART)” (“5-7” means
the 7-th section in chapter 5), and the key terms in this section
(such as CART, entropy, etc.) were also listed to help the
learner judge if he was interested and able to understand this
section. The learner could click the button “Play” and listen
to the course starting from the returned segment, or click the
link “5-7 Classification and ......” (in the green frame) to jump
to the section 5-7 as the screenshot in Fig. 10 (b).

In Fig. 10 (b), the learner found that this section was 10
minutes and 23 seconds long (in the green frame), but he
could click the bottom “Play Summary” (with the red edges)
to listen to a summary of only 1 minute and 2 seconds
long. In addition to the slide, the learner also saw a list of
key terms extracted in this section in a yellow bar including
“Classification and Regression Tree” and “Machine learning”.
Other key terms below each key term in the yellow bar
were those connected to the key term in the yellow bar on
the key term graph (e.g. “entropy”, “triphone”, etc. below
“Classification and Regression Tree” were those connected to
“Classification and Regression Tree”9). If the learner clicked
the key term “entropy”, the system then showed all sections
in the temporal structure containing this key term including
where the key term appeared the first time as an exam-
ple learning path recommended by the system as shown in
Fig. 10 (c). Therefore, the learner can choose to learn more
about “entropy” sequentially from the beginning or towards
more advanced topics if needed.

The subjective user tests were conducted to gauge the
efficiency of the proposed spoken knowledge organization ap-
proaches for course lectures. Each subject was asked to answer
ten questions specifically designed based on the content of the
target course, which are listed in Table VII. The subjects used
either the prototype system in Fig. 10 or a baseline system
to help them find the answers (but they could not consult any
other materials). The baseline system simply put the course on
the internet without spoken knowledge organization as normal
MOOC platforms or course warehouses. The interface of the
baseline system was exactly the same as Fig. 10 (b), except
that there were no key terms, summaries and search blank.
Ten graduate students of National Taiwan University who had
taken the target course participated in the test. To remove the

9Classification and regression tree is used to tie triphones here, and entropy
was used as the criterion for node splitting.
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(a) Spoken content retrieval with input query “triphone”.

(b) Slide, summary and keyterms for section “5-7 Classification and Regression Tree (CART)” linked from the first item in (a).

(c) Example learning path for the key term “Entropy” recommended by the
system.

Fig. 10: Example screenshots of the prototype system.

bias from the users, the users were arranged into two groups.
The users in group one answered questions number one to five
by interacting with the baseline system and answered questions
number six to ten by the prototype system, while the users in
group two did the opposite. In this way, each user used both
the baseline and prototype systems when answering the ten
questions. The amount of time (seconds) required to answer
each question is in Table VII. We found that the users can
answer all of the questions faster when using the prototype
system, except question number one (“List three HMM basic
problems”). Because question number one is a very basic
question for the target course, some of the users can answer

this question directly without consulting the systems. This
is why the prototype system was not very helpful for this
question. The last row in Table VII shows the average amount
of time required to answer the questions. The users took 134
seconds in average to answer a question with the baseline
system, but only 49 seconds with the prototype system. The
prototype system helped the users to answer the questions
more than two times faster.

XI. CONCLUSION

This paper presents a new approach of organizing the
spoken knowledge covered by course lectures for efficient
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Questions Baseline system Prototype system
1. List three HMM basic problems. 47 53
2. List three speaker adaptation approaches. 114 68
3. List five language model smoothing approaches. 41 29
4. What does “CART” stand for? 217 8
5. When and which conference was the first paper of PLSI published? 310 143
6. List the numbers of Mandarin syllables, initials and finals. 83 67
7. List three DSR models. 93 12
8. List two evaluation measures for information retrieval. 99 35
9. What does “MFCC” stand for? 35 33
10. When was the first paper of Spectrum Subtraction published? 299 46
Average 134 49

TABLE VII: The amount of time (seconds) required to answer the questions using baseline and prototype systems.

personalized learning with multiple ways of learner/content in-
teractions. Key terms for the course content are automatically
extracted and connected into a key term graph to form the
backbone of the global semantic structure of the course. Sum-
maries are generated for each paragraph, section and chapter
forming the multi-layer temporal structure interconnected with
the above structure. Spoken content retrieval together with the
above structured knowledge jointly offer an efficient way for
the learner to navigate across the course content and develop
personalized learning paths. A preliminary prototype system is
successfully developed based on a course offered in Mandarin-
English code-mixed speech.
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