
Spoken Term Detection and Spoken Content Retrieval:
Evaluations on NTCIR-11 SpokenQuery&Doc Task

Sz-Rung Shiang
National Taiwan University

No 1, Sec 4, Roosevelt
Road,Taipei, 10617 Taiwan

b97901031@ntu.edu.tw

Po-Wei Chou
National Taiwan University

No 1, Sec 4, Roosevelt
Road,Taipei, 10617 Taiwan
botonchou@gmail.com

Lang-Chi Yu
National Taiwan University

No 1, Sec 4, Roosevelt
Road,Taipei, 10617 Taiwan

b99901132@ntu.edu.tw

ABSTRACT
In this paper, we report out experiments on NTCIR-11 Spo-
kenDoc&Query task for spoken term detection (STD) and
spoken content retrieval (SCR). In STD, we consider acous-
tic feature similarity between utterances over both word and
sub-word lattices to deal with the general problem of open
vocabulary retrieval with queries of variable length. In SCR,
we modify term frequency using expected term frequency in
the vector space model (VSM) to deal with the errors in the
speech recognition. In addition, we utilize three techniques
to improve the relevance of the first-pass retrieval, that is,
pseudo relevance feedback called Rocchio algorithm, query
expansion using recurrent neural network language model
(RNNLM), and lecture slide similarity feedback using ran-
dom walk. Experiment results are shown for each task to
indicate the improvement of the techniques we apply.
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1. INTRODUCTION
There are generally two processing stages in the task of

spoken term detection (STD). First, the audio is first tran-
scribed into lattices, and then the retrieve engine will search
through the lattices based on the user’s query and return a
list of relevant spoken utterances. When out-of-vocabulary
(OOV) words are presented in the query, we need subword-
based approaches because the aforementioned word lattices
would be inadequate. Since the same words may have sim-
ilar pronunciation thus similar acoustic feature sequences,

acoustic feature similarity between utterances are sometimes
useful in task of STD. We use both word and sub-word
approaches for the first-pass retrieval, and then consider
word/subword-based acoustic feature similarity for re-ranking.

In spoken content retrieval(SCR), a major problem is that
some errors in ASR would eliminate relevance of the docu-
ments and the queries. To deal with that, instead of recog-
nizing one-best transcriptions using ASR, an alternative way
called expected term frequency is applied. It calculates the
word appearance probability on lattice and induces recog-
nition confidence into term frequency (TF). In other words,
the frequency that a word appearing once in transcriptions
is a probability score instead of 1. With expected term fre-
quency, false negative, that the correct words not appear-
ing in the recognition result, would be more likely to be
included in the transcriptions. In addition, due to the diver-
sity of words, some synonyms share the same semantics but
are considered indepently and individually in vector space
model (VSM). To tackle this problem, more words with se-
mantic relationships should be taken into the queries. A
generally used method is query expansion. We leverage the
word representation from recurrent neural network (RNN)
to model the semantic relationships between words, and add
the releted word into queries. Moreover, to improve the rele-
vance of SCR task, we leverage the first-pass relevance score
from VSM, and further re-rank it using pseudo relevance
feedback (PRF) and score propagation through slide seg-
ments similarity. With re-ranking, more words not in the
original queries but actually with semantic similarity can be
used to reformulate the new queries.

The rest of paper is structured as follow. The spoken term
detection (STD) task, including the graph based re-ranking
with acoustic similarity and corresponding evaluations, is
described in section 2. The spoken content retrieval (SCR)
task and its experiments are described in section 3. Conclu-
sions are provided in section 4.

2. SPOKEN TERM DETECTION TASK
In this framework for spoken term detection, the utter-

ances in the corpus were first transcribed into word or sub-
word lattices by a ASR system. Every time when the user
enters a new query (Q), the retrieve engine will search through
the lattices and return a first-pass list xi ranked by the rele-
vance score, which will be discussed later in 2.1. After that,
the acoustic feature similarity S(xi, xj) from the dynamic
time warping (DTW) is used to re-rank the first-pass list to
obtain the final retrieval result.



Figure 1: An example of computing S(xi, xj ; {w1, w2}),
acoustic feature similarity between xi and xj considering the
2-gram {w1, w2}.

2.1 First-Pass Retrieval
The relevance score R(xi) used to obtain the first-pass

list can be derived from either word or sub-word lattices.
Relevance scores from word lattices are usually more accu-
rate than those from subword lattices, but to be able to
deal with out-of-vocabulary (OOV) queries, we need the
latter. Given a query Q with more than one word, Q =
{wj , j = 1, 2, ..., N}, where wj is the j-th word and N is
the number of words in query Q, we can compute the rele-
vance scores R(xi) for utterance xi by counting the expected
term frequencies. That is, we calculate the expected count
Ek,n for each possible n-gram Wk,n = {wk, ..., wk+n−1} , k =
1, 2, ...N − n+ 1 as in (1b).

Ek,n,xi = E[Wk,n|xi] (1a)

=

∑
u∈W (xi)

P (xi, u)C(u,Wk,n)∑
u∈W (xi)

P (xi, u)
, (1b)

Then we combine those counts for all such n-grams to pro-
duce a score Rn(xi, Q) as in (2a), and finally obtain the
relevance score of utterance xi and query Q by integrating
all those Rn(xi, Q) with weight an, as in (2b).

Rn(xi, Q) =

N−n+1∑
k=1

Ek,n,xi (2a)

R(xi, Q) =

N∑
n=1

an ·Rn(xi, Q), (2b)

2.2 Acoustic Feature Similarity
The acoustic feature similarity S(xi, xj) between two re-

trieved utterances xi and xj is computed by dynamic time
warping (DTW), which will later be used in two re-ranking
methods to obtain second-pass retrieval results.

For every queryQ and each n-gramWk,n = {wk, ..., wk+n−1}
in Q, dynamic time warping (DTW) distance is first per-
formed between the acoustic feature sequences correspond-
ing to the subpaths in the lattices of xi adn xj for word hy-
potheses. An example is shown in Fig.1. This gives a DTW
distance d(xi, xj ;Wk,n) between xi and xj considering the
n-gram Wk,n in the query. The similarity S(xi, xj ;Wk,n)
can be easily converted from the DTW distance as in (3).

S(xi, xj ;Wk,n) = 1− d(xi, xj ;Wk,n)− dmin

dmax − dmin
, (3)

Task Word Syllable Word + Syllable

Baseline 0.4236 0.0359 0.4362
PRF 0.4256 0.0215 0.3969

Table 1: MAP Results of SQSTD

where dmax and dmin are the largest and smallest values of
d(xi, xj ;Wk,n) for all pairs of utterances in the first-pass list
(i.e. we negate the distance and normalize it to the range
of 0 to 1). Using the same approach as in (2a) and (2b), we
integrate all such n-grams and then combine them together
as the following:

Sn(xi, xj) =

N−n+1∑
k=1

S(xi, xj ;Wk,n) (4a)

S(xi, xj) =

N∑
n=1

bn · Sn(xi, xj), (4b)

where bn is another set of weighting parameters. The com-
putation of S(xi, xj) based on sub-word units is exactly the
same as those based on words, except replacing each word
wi by a sub-word unit si.

2.3 Re-ranking & Second-pass
To obtain the second-pass retrieval results, we use pseudo-

relevance feedback (PRF) and graph-based re-ranking as our
re-ranking methods. Details of these 2 algorithms can be
found in [4].

2.4 Experiments
The retrieval results are measured by mean average pre-

cision (MAP) and shown in the Table.1. We found that
the pseudo-relevance feedback improve the performance of
word-based retrieval but not the overall performance. Simi-
lar results can also be found in graph-based re-ranking. One
reason to explain this phenomenon is that the performance
of baseline result of syllable-based approach is too worse to
be reliable. Therefore, the re-ranking methods, which are
heavily based on the hypothesis regions obtained from the
baseline results, does not improve the performance. The
overall performance also depends on the weighting between
word and syllable, which is chosen to be 0.1 in our experi-
ments. A smarter and better way to choose the weighting
parameter is needed.

3. SPOKEN CONTENT RETRIEVAL TASK
In the spoken content retrieval (SCR) task, we mainly fo-

cus on Slide-Group-Segment (SGS) subtask that demands
for a relevance list of slide segments according to the query.
We introduce expected term frequency into vector space
model (VSM) and apply query expansion and two re-ranking
techniques on the first-pass retrieval results. In this section,
we first describe the expected term frequency, then explain
the query expansion and re-ranking techniques to improve
the relevance score, and show the evaluations of this task.

3.1 Expected Term Frequency and Vector
Space Model

Spoken documents are prone to have more errors and in-
formation loss than text documents do. To adapt to the
characteristic, we used lattices as input instead of one-best



Figure 2: Illustration of recurrent neural network language
model (RNNLM), where U is the word representation ma-
trix we used to comprehend semantic relationships between
words.

recognition transcriptions in order to consider the uncer-
tainty of speech recognition. On the lattice graph, each
path from start node to end node is a possible recognition
result, and a path probability can be calculated through nor-
malizing the score of acoustic model and language model.
With a lot of paths (possible recognition results) with prob-
ability, the word appearance probability can be counted as
the total probability of the paths across it on lattice, and
that is the expected term frequency [3]. Here we apply the
expected term frequency to replace simple term frequency
(TF). That is to say, the frequency of word appearing once
on lattice counts a probability score from 0 to 1 rather than
1. Higher probability of word appearance indicates that the
words are more likely to be correctly recognized. With ex-
pected term frequency, false negative recognition errors can
be more likely to be included in the VSM, thus preventing
releted word from being excluded by ASR. We use term
frequency-inverse document frequency (TF-IDF) in VSM
with TF replaced by expected term frequency, and we fil-
ter out the words with probability less than 0.05.

After constructing TF-IDF for each slide-group segment
and query, we calculate the relevance score through cosine
similarity [8] as (5).

Relevance(segment,Q) =
vec(segment) · vec(Q)

‖vec(segment)‖ ‖vec(Q)‖ , (5)

where Q is the query and vec is the vector representation in
TF-IDF/VSM. The segments with high score indicate high
relevance to the queries, and vice versa.

3.2 Query Expansion
To include more semantic related words into queries, we

apply word representation using recurrent neural network
language model (RNNLM) [5],[6] on the query expansion
part. The L×H weight matrix from the input layer to the
hidden layer as described in Fig.2, where L is the lexicon
size and H is the hidden layer size, can be taken as word
representation matrix. In the word representation matrix,
each word has a feature vector with the same dimension as
hidden layer size H. It is noted that we set hidden layer size
H as 80 in the following experiments.

For each word in the original query, we compute the sim-

Figure 3: Illustration of rocchio pesudo relevance feedback.
Query’ is the modified query, ”+” is the relevant document,
and ”-” is the irrelevant document.

ilarity to other words in lexicon using cosine similarity:

Sim(w1, w2) =
Fea(w1) · Fea(w2)

‖Fea(w1)‖ ‖Fea(w2)‖ , (6)

where w1 and w2 are specific words and Fea(·) denotes the
feature vector for word. We take the a similarity score
threshold as 0.5 or up to 10 similar words for each word.
That is to say, we only take at most 10 expansion words for
each word in query. After extracting the similar words for
query expansion, we add them to TF-IDF/VSM, and then
calculate the relevance score through cosine similarity as (5).

3.3 Pseudo Relevance Feedback
In the first-pass retrieval result using the original query,

some relevant documents could not be retrieved because of
word diversity. Words in these documents do not equal to
those in the query, even they have some similarity in seman-
tics; therefore, the performance would degrade. To include
more words related to queries in order to improve the re-
trieval performance, we applied Rocchio algorithm [2], which
makes the words in first pass relevance documents to be in-
cluded into the original query.

It is hypothesized that the documents retrieved first time
using the original query are good enough, and some co-
occurring words in the documents but not in the query prob-
ably have semantic relationships to the query words. In
addition, words appearing in the most irrelevant documents
(those with lowest score in the first-pass retrieval) may be to-
tally off-topic of the intention of the query; therefore, we can
also put negative weights on these words to modify query.
That is to say, we not only make modified query close to the
words in the first pass relevant documents, but also far away
from the irrelevant documents in Rocchio relevance feed-
back, as shown in Fig. 3. It is also called pseudo relevance
feedback because actually there is not any answer or human
effort to judge the relevance of the documents as feedback to
reformulate query; instead, we just assume that documents
with highest/lowest score reveal the relevance/irrelevance to
some extent. The new query is formulated as below:

~Qm = (a· ~Q0)+(
b

|Dr|
·
∑

Dj∈Dr

~Dr)−(
c

|Dnr|
·

∑
Dk∈Dnr

~Dk), (7)

where ~Qm and ~Q0 denotes vector space representation, such
as TFIDF in this task, of the modified query and the origi-
nal query correspondingly, Dr represents the relevant docu-
ments set and Dnr represents the irrelevant documents set.
Parameters a, b and c are weights to balance the original



Figure 4: An example of random walk graph, where each
node is a slide, and each two nodes have a edge with score
(neighboring score).

query and the relevance feedback documents. Here we set
a = 1, b = 0.8, c = 0.1, |Dr| = |Dnr| = 5.

3.4 Lecture Similarity Feedback
In this task, neighboring segments or slides sometimes

share the similar idea of the lecture. The speaker probably
talks about the same topic in one slide; therefore, these seg-
ments share the similar content even the words in segments
are different. Moreover, sometimes speaker only mentions
terms in the beginning of the lectures, and they would use
pronouns instead afterwards. As a result, though some seg-
ments of slides share the similar idea, they fail to show the
relevance of the segments to the queries using VSM. To cap-
ture this characteristic, we think up a way to propagate
the relevance score to the neighboring segments using ran-
dom walk [7] re-ranking techniques. In random walk, score
propagates through the graph composed of nodes and edges
as shown in Fig. 4. Each node here denotes one segment
in slide, and each edge between two nodes has a weight to
show the neighboring score as (8).

Score(si, sj) =
1

|i− j|2
, (8)

where i and j are the index of the segments of a certain
slide. If two segments si and sj are not in the same slide,
the neighboring score would be 0.

After constructing the graph, we propagate the first-pass
retrieval score of each segment to the neighboring segment
using random walk:

F (t+1) = (1− α) · F (0) + α · LT · F (t), (9)

where F (t) denotes the t-th iteration of the score vector of
segments, F (0) denotes the initial score vector of the seg-
ments (here we used first-pass relevance score) ,L is the nor-
malized edge matrix of neighboring score as (8), and α is a
parameter to balance the initial score and the graph prop-
agation with value between 0 and 1. We iteratively update
the score as (9) until the score vector converges as (10),
and we take the convergent score vector as the re-ranking
relevance score. In addition, higher the score, higher the
relevance score.

F (T ) = (1− α) · F (0) + α · LT · F (T ). (10)

Through the score propagation, nodes would give and take
some score from their neighboring nodes; therefore, they
would more likely to have similar score. In other words, the
segment with more neighboring segments with high score are
more likely to have high score, and vice versa.

One-best Expected TF

(a) Raw 0.1056 0.1294
(b) +Hiragana filter 0.1066 0.1351
(c) Dictionary form – 0.1537
(d) +Hiragana filter – 0.1543

Table 2: MAP Results using one-best transcriptions and ex-
pected term frequency from lattice.

One-best Expected TF

(a) Baseline 0.1056 0.1294
(b) Rocchio 0.1165 0.1360
(c) RNNLM query expansion 0.1058 0.1294
(d) Lecture similarity 0.1079 0.1319

Table 3: MAP Results of re-ranking techniques and query
expasion on both one-best transcriptions and expected term
frequency from lattice.

3.5 Experiments
In the SCR subtask, we used the word level recognition

results with match model. More details about the corpus
and task can be found in the overview paper of NTCIR-11[1].
We first extract some stopwords from the top 100 words
with highest product of term frequency (TF) and document
frequency (DF), and then we remove the stopwords from
our recognition results. In the Japanese decoder, both the
pronunciation and dictionary form are given; therefore, we
take both the raw results and dictionary form results as
comparison. The RNNLM word representation used in this
task is trained on one-best transcriptions of all the lectures
in NTCIR-11 SpokenQuery&Doc corpus with lexicon size
as 6542 words and hidden layer size as 80. Mean average
precision (MAP) is used as the evaluation metrics.

In Table. 2, we show MAP results of first-pass retrieval us-
ing both one-best recognition transcripts and expected term
frequency from lattice. It is noted that the one-best means
that we assign 1 for each word appearing in the transcrip-
tions. Row (a) and (c) show the results on raw form and dic-
tionary form correspondingly. ”Hiragana filter” in both row
(b) and row (d) means that we only extract the words that
not all elements are hiragana, because most of the important
words in the lectures are characters in Chinese or katakana.
It is shown that the expected term frequency can effectively
improve the performance over 2-3 percent on MAP, since
more possible words are considered into the queries of the
retrieval task. Moreover, the usage of hiragana filter and
dictionary form also make significant improvement.

In Table. 3, we compare the results of query expansion,
Rocchio algorithm, and lecture similarity feedback with the
baseline, and we conduct the experiments on the raw form
recognition results using expected term frequency in VSM.
Baseline shown in row (a) is the same as the one in Table.
2. We set α in random walk for lecture similarity feedback
as 0.1 in this task. Promising results reveal that Rocchio
algorithm as row (b) and lecture similarity feedback as row
(d) can make progress on both one-best and lattice recog-
nition results. However, results of RNNLM query expan-
sion only show little increasing MAP. There are two possi-
ble reasons why RNNLM query expansion has limited im-
provement. First, the training corpus for RNNLM here is
too small, thus insufficient and imbalance data lead to bad



Figure 5: MAP results of different α in random walk for
lecture similairty feedback. The horizontal axis is α and the
vertical axis is MAP evaluation.

performance of word representation. Another reason may
be that recognition errors in ASR induce confusing word
representation; therefore, some words for query expansion
actually do not have such semantic relationships at all.

In Fig.5, MAP results with different parameter α in ran-
dom walk for the lecture similarity feedback are shown. Ex-
periment is conducted on the raw form recognition results
with VSM using expected term frequency. As the parame-
ter α increasing, the MAP performance gets improvement,
which shows the neighboring segments in slides share the
similar idea. It is noted that the performance with α = 1
equals to the first-pass retrieval result.

4. CONCLUSION
In STD, though the combination of word and sub-word

can be helpful in performance in some cases, a further study
on the algorithm to determine the weighting parameter is
required. In SCR, we conduct the preliminary experiments
and achieve improvement over the results with the modi-
fied VSM, query expansion, and re-ranking techniques using
Rocchio algorithm and lecture similarity feedback. Greater
improvement is possible if all of the methods can be com-
bined or jointly considered.
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